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ABSTRACT 
 

R&D activities by one industry can have positive effects on the productivity performance of 
other industries, as a consequence of technology spillovers. Multicollinearity problems, however, 
have precluded the identification of industries that have been responsible for the most important 
technology spillovers. This paper proposes an alternative estimation approach (Minimum Cross 
Entropy econometrics) to cope with these problems. For a number of manufacturing industries, 
rates of return to R&D expenditures by other industries are estimated on a bilateral basis. 
Furthermore, productivity effects of spillovers from the foreign counterparts of the industry are 
estimated. The analysis is done for eighteen industries in twelve OECD countries in the period 
1976-1999.   
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Addressing Keller’s Critique: More on The 
Identification of Productive Technology Spillovers 

 
1. Introduction 
 
Knowledge has some characteristics of a public good. It is partly nonrival and partly non-
excludable, which implies that it can give rise to externalities. In mainstream theory, externalities 
often call for public policy. If the externalities are mainly positive, governments should take care 
of additional supply of the public good. Since most theories stress the positive externalities of 
knowledge, its purposeful production (for instance, by means of R&D activities) should be 
stimulated. Since the extent and nature of R&D activity varies considerably across industries, 
policy effectiveness would be helped considerably if the industries that generate the most 
important externalities (or, ‘spillovers’) could be singled out. Despite the by now vast empirical 
literature on this topic, one cannot but observe that this identification objective has still not been 
attained. This paper proposes a less traditional econometric approach, to come closer to the 
production of a matrix that indicates the productivity effects manufacturing industries experience 
as a consequence of R&D activities done in each of the other manufacturing industries. 
Productivity effects of foreign counterparts will also be estimated. 

Due to econometric problems (i.e. multicollinearity), empirical research on productivity 
effects has so far relied on composite spillover variables. Constructing such variables involves the 
definition of a weighting scheme, to approximate the relevance of industry-specific contributions 
to the industry under consideration. Including relevance weights is important, since it is 
implausible to assume that the electronics industry will enjoy similar benefits from a euro spent 
on R&D in the food industry to those from a euro spent on R&D in the computer industry. 
Several weighting schemes have been proposed, based on different notions of technology flows 
channels. Studies like Los and Verspagen (2000) compared results for a couple of such composite 
variables to find out which type of spillovers would have the most prominent effects, but did not 
find very strong results. Keller (1997, 1998) went much further, by arguing that theoretically 
underpinned composite variables do not perform any better than composite variables based on 
randomly chosen weights. Although Keller’s results were not left uncriticized, a very 
inconvenient situation emerged: almost all studies (see Nadiri, 1993, and Mohnen, 1996, for early 
surveys) agree that technology spillovers have substantial positive effects on productivity, but it is 
impossible to assess which industries are best at “radiating” productive spillovers. 

This paper attempts to shed new light on the discussion, by adopting a non-classical 
regression approach, which does not suffer from the problems that led researchers using classical 
regression analysis to use composite spillover variables. Generalized Minimum Cross Entropy 
(GCE) econometrics can deal with multicollinearity in data (see the introduction by Golan et al., 
1996). We applied our GCE analysis on data for 12 developed countries, for the period 1976-
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1999. The data on industry-level value added growth and labor inputs were taken from the very 
recent EU KLEMS (2007a, 2007b, 2008) database. OECD’s STAN-ANBERD dataset was used 
as the source for the industry-level R&D data. Our analysis gives indications about the main 
suppliers of technology spillovers for each of the 18 manufacturing industries for which we run 
the analysis. 

The paper is organized as follows. Section 2 reviews the general setup of studies into the 
productivity effects of technology spillovers and discusses the current state of affairs. In Section 
3, we give an introduction in the intuition behind MCE estimation and present the equations we 
will estimate using these techniques. Section 4 is devoted to a brief discussion of the data, after 
which the estimation results are presented in Section 5. Section 6 contains results for several 
robustness checks, in which we run the analysis with additional variables and for different 
definitions of labor productivity. Section 7 concludes.             
 
 
2. A Brief Non-Chronological History of Spillover Effects Estimation 
 
Since the early 1960s, many studies have tried to estimate the empirical importance of technology 
spillovers for productivity growth. Generally, these productivity studies start from a production 
function, most often an extended Cobb-Douglas specification. Not only the traditional 
production factors physical capital and labor are included, but also two kinds of R&D stocks: 
R&D investments by the unit (firm, industry, region or country) itself and R&D obtained 
through spillovers from other units (so-called indirect R&D). If we denote the former by R and 
the latter by IR, the production function looks like 
 

( )jt jt jt jt jtQ A IR K L Rη α β γ=         (1) 
 

Q stands for value added, A is a constant, K indicates the stock of physical capital, L denotes 
employment, t is the time index and j is the unit index. The elasticities η, α, β and γ can be 
estimated, if sufficient observations on each of the variables are available. Alternatively, β can be 
measured as the labor share in total income (this approach is commonly known as ‘growth 
accounting’). If constant returns to scale with respect to capital and labor are imposed, α equals 
1-β. In this way, a measure for total factor productivity (TFP) growth is obtained, and this can be 
related to the changes in both R&D stocks.1 Both approaches yield estimates for output 
elasticities with respect to indirect R&D, (dQ/dIR)⋅(IR/Q), or rates of return to indirect R&D, 
dQ/dIR. These are considered to be measures for the impact of spillovers. As explained by Van 
Meijl (1995), estimating a common rate of return is often less data-demanding than estimating a 

                                                           
1   A third approach is to use the dual of the production function, i.e., the cost function. Changes in the costs per 

unit of output are regressed on changes in the prices and quantities of various inputs (see Bernstein and Nadiri, 
1988). 
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common elasticity. Under the (admittedly strong) assumption that R&D stocks are not subject to 
depreciation, rates of return can be estimated by linking total factor productivity growth to R&D 
intensities, defined as RE/Q and IRE/Q (E indicates expenditures).2  

In principle, the simplest way to estimate the influence of R&D efforts in other industries is 
the one applied by Bernstein and Nadiri (1988). They specify one indirect R&D variable for each 
of the (other) industries. For example, the decrease in unit costs in the U.S. chemical industry is 
related to the R&D expenditures of the industries that manufacture non-electrical machinery, 
electrical products, transportation equipment and scientific instruments. This approach lets the 
data speak for themselves to see which (other) industries influence the productivity of a particular 
industry. The method has one important drawback: most industry R&D budgets have risen 
during the last decades and are relatively high for the same set of countries, which causes huge 
multicollinearity problems. The method we propose below could be seen as a way of following 
up to the lead by Bernstein and Nadiri (1988), using an alternative regression technique. 

Since classical regression analysis is not suitable to solve the problems encountered by 
Bernstein and Nadiri, many authors have proceeded along an alternative avenue of research. 
They continued in the way proposed much earlier already by Terleckyj (1974), using weights to 
construct aggregate indirect R&D investment variables (IRE): 
 

∑ω=
i

iijj REIRE   ∀i≠j       (2) 

 
In this expression, i and j denote the ‘spillover producing’ and ‘spillover receiving’ units, 
respectively. The weights ωij are the crucial elements distinguishing the different approaches to 
measuring spillovers. They indicate to what extent the R&D undertaken by i may be considered 
to be part of the indirect R&D expenditures of j. A number of weighting schemes have been 
proposed. We will describe them briefly (see Los and Verspagen, 2007, for much more detailed 
discussions).3 
 
Unit Weights 
In his firm level study emphasizing the effects of intraindustry spillovers, Bernstein (1989) 
circumvents the weighting problem by setting all weights equal to one. So did Los and Verspagen 
(2000) in their attempt to evaluate the empirical performance of four different interindustry 
spillover measures. The most important disadvantage of this method is that no account is taken 
of the theory of spillovers, which argues that due to differences in technological opportunities, 
appropriability of knowledge, differences in trade intensities among industries etc., the weights 
should in fact be very heterogeneous. 
                                                           
2  This procedure is sometimes referred to as the ‘Terleckyj transformation’, after Terleckyj (1974). 
3  See Griliches (1979, 1992) for classic contributions on channels through which innovations in one industry can 

affect the (sometimes misperceived) productivity performance of other industries. Van Pottelsberghe (1997) 
expresses views that are not in every sense in line with Los and Verspagen’s (2000, 2007) opinions. 
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Weights Based on Transaction Input or Output Shares 
Early attempts to include spillovers in productivity analysis at the industry level (Terleckyj, 1974) 
used trade statistics to construct industry weights ωij. Input-output tables are converted into 
tables of output coefficients. Such coefficients indicate the share of industry i’s output delivered 
to industry j. Next, R&D weights are set equal to the output coefficients, except for the diagonal 
elements. Terleckyj also calculated similar output coefficients from capital flow matrices to 
account for interindustry investment flows. In this output shares approach, ‘second-round’ 
effects might also be important. This occurs when spillovers are transmitted to industries down 
the production chain, for example, when advances in semi-conductors spill over to the computer 
industry, and from there to the banking industry (see, e.g. Sakurai et al., 1997).  

Input-output tables are also used to compute spillover measures in which the ωijs are defined 
as the input coefficients aij. Wolff (1997), among others, used this measure in an interindustry 
context. In their highly influential international spillover study, Coe and Helpman (1995) 
construct a similar measure (using import weights). A disadvantage of these approaches is that 
only trade-related knowledge flows are taken into account. It is well-known that several other 
channels provide opportunities for technology spillovers. 
 
Weights Based on Patent and Innovation Output Shares 
Scherer (1982) pioneered another approach, because he felt that economic transactions often do 
not entail exchange of technology. A procedure based on true technological data should be used. 
First, he assigned a sample of patents granted in a certain period to an industry-of-origin, i.e., the 
producer of the technology described in the patent. Next, all patents were assigned to one or 
more industries-of-use, on the basis of information in the patent document.4 Finally, output 
shares were computed in a way directly comparable to the way output coefficients are 
constructed for traditional input-output tables based on economic transactions.  

Numbers of innovations could be used as an alternative for patent counts. Sterlacchini (1989) 
used a large innovation survey undertaken by Robson et al. (1988). In this survey, innovations 
were assigned to an industry-of-origin (or industry-of-manufacture) and an industry-of-use. Next, 
he used this ‘innovations input-output table’ to calculate innovation share weights ωij, denoting 
the share of innovations of industry i used by industry j. DeBresson et al. (1994) followed this 
lead. A disadvantage of both approaches is that the focus is on innovations traded between 
industries, usually embodied in product innovations. Knowledge flows not related to economic 
transactions are not considered. In this sense, the main disadvantage of input-output based 
weights is not addressed by these methods. 

                                                           
4  Johnson and Evenson (1997) proposed a concordance that maps patent classification codes assigned by the 

Canadian Patent Office onto industry codes, which enabled them to construct their matrix without the need to 
examine every patent document individually. 
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Weights Based on Patent Information Output Shares 
Verspagen (1997a) derived different spillover measures from patent office documents. Using a 
concordance that maps patent classification codes onto manufacturing industry classes, 
Verspagen derived the industry most likely to have produced the knowledge described in the 
patent document, and the industries that have been most likely to benefit from this knowledge 
(not the patented product itself).5 This yielded a ‘patent information input-output table’ similar in 
format to the ones described above. The ωijs were then, set equal to the output coefficients of 
this table. 

Verspagen constructed a second type of patent information input-output tables using patent 
citations. The patent citation output share weights method has the disadvantage that it relates to a 
very specific channel of spillovers and implicitly assumes that each cited patent is equally relevant 
to the spillover receiver.  
 
Weights Based on Technological Proximity 
The first spillover measure explicitly focusing on non-traded knowledge spillovers was 
constructed by Jaffe (1986). He argued that knowledge generated by R&D investments flows into 
a ‘spillover pool’, which is accessible to all firms. Some firms or industries benefit more from 
firm i’s contribution to the pool than others, because not all knowledge is relevant to their R&D. 
To measure the part of the contribution of the ith firm that is relevant to firm j, Jaffe (1986) used 
a ‘technological proximity’ measure: 
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Equation (3) gives the cosine of two vectors consisting of the shares of the F patent classes in the 
‘patent portfolio’ of a firm. Goto and Suzuki (1989) chose a similar spillover measure in their 
productivity study at the industry level, but used Japanese information on the shares of product 
classes to which the R&D of an industry is devoted, instead of patent classes.6  

                                                           
5  Whereas a patent originating from the aircraft industry might have the airlines industry as its main beneficiary in 

terms of the use of the patented product, the main user of the knowledge documented in the patent might be the 
motor vehicles industry.  

6  Comparable approaches can be found in Adams (1990), who used the shares of various categories of scientists in 
the research work force of an industry as determinants of its position ‘in technological space’, and in Los (2000), 
who proposed to compute weights analogously on the basis of columns of input-output tables. 
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  A disadvantage of these methods is that symmetry is imposed, while it is very awkward to 
suppose that if industry i would generate knowledge useful for industry j, industry i will 
automatically benefit to the same extent from knowledge generated in j. 

 
The discussion above shows that a number of approaches have been adopted to weight R&D 
expenditures to arrive at composite indirect R&D or spillover variables. The main result of most 
studies is that technology spillovers do have a substantive impact on productivity growth, 
irrespective of the weighting scheme applied. As a matter of fact, Keller (1997) claimed that most 
sets of randomly generated weights yielded virtually identical rates of return and goodness of fit 
statistics. Later on, in a critique of the influential article by Coe and Helpman (1995), he also 
claimed to find such a result for the effects of international R&D spillovers (Keller, 1998). This 
result got a lot of attention. Although Keller’s claims had to be modified somewhat because of 
the peculiar way in which he had constructed his random weights, the bottomline was a negative 
one: Unit weights as discussed above did not yield better or worse results than sets of weights 
constructed along ways grounded in theory. This more or less led to a standstill with regard to 
this kind of research. Case study research into sources of technology for specific industries and 
countries largely replaced systematic comparisons. 

In our view, not much more can be gained from the composite spillover variable approach. 
We feel, however, that new developments in non-classical econometrics make it possible to deal 
with data characterized by strong violations of the requirements for sensible application of 
classical least squares approaches. Hence, we propose to return to the original Bernstein and 
Nadiri (1988) approach of specifying an equation with several industry-specific R&D variables in 
the right hand side of the equation. These equations will be riddled with multicollinearity 
problems. Since Generalized Minimum Cross Entropy methods are capable of dealing with 
problems like these, we aim at estimating rates of return to R&D expenditures by individual 
industries, including by the industry considered (returns to “own” R&D).        
 
 
3. The Minimum Cross Entropy Approach 
 
In this section, the basics of Minimum Cross Entropy (CE) econometrics will be introduced. We 
will limit our discussion to methods used to obtain estimates for the type of linear regression 
models we use to assess the productivity effects of technology spillovers. More extensive 
introductions can be found in Kapur and Kesavan (1992) and Golan et al. (1996). The essential 
property of the CE principle is that estimates are derived from the probablity distribution that is 
as similar as possible to an appropriate prior distribution, constrained by the condition that it is in 
line with the observed data and a very general distribution for the error terms. This is 
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fundamentally different from the classical least squares approach, in which several strong 
assumptions on the distribution of the error term must be taken for granted. 

The main idea is that a random variable (such as an estimator) z can take on K values (z1, …, 
zK), with unknown probabilities p = (p1, …, pK) and that some subjective non-sample information 
about p is present in the form of a prior distribution q = (q1, …, qK)  Following the formulation 
proposed by Kullback (1959), the cross entropy of these distributions p  and q is: 

 

( )∑
=

=
K

k
kkk qppI

1

/ln),( qp  (4)

 
The cross entropy function I measures the dissimilarity of the distributions p and q . This 
function reaches its minimum (zero) when p and q are identical. If some information (for 
example, observations on variables) is available, it can be used as one or more constraints in a 
linear programming model aimed at minimizing (4). If we denote the set of probabilities implied 
by the minimization procedures by p~ , each piece of information will lead to a Bayesian update of 
this estimated distribution. The estimated value is found by computing the expected value of z, 
given p~ . It is important to note that even for a situation with only one observation, the CE 
approach yields an estimate of the probabilities, since this observation will generally lead to a 
difference between the priori q and the posterior p~ . Hence, in situations in which the number of 
observations is not large enough to apply classical econometrics, this approach can be used to 
obtain robust estimates of unknown parameters. 

The problem at hand is the estimation of a linear model where a variable y depends on R 
explanatory variables xl: 

 
eXβy +=  (5)

 
in which y is the ( )1×N  vector of observations for y, X is the ( )N R×  matrix of observations 
for the R explanatory variables, β  is the ( )1R×  vector of unknown parameters ( )1,..., Rβ β ′=β  
to be estimated, and e is the ( )1×N  vector with random disturbances. As mentioned, each rβ  is 
assumed to be a discrete random variable in the CE approach. A priori beliefs about their 2K ≥  
possible realizations are included in the estimation procedure by means of support vectors 

( )1 2, , , 'r r r rKb b b=b K  with corresponding probabilities ( )1,..., 'r r rKp p=p , for r = 1, …, R. The 
vectors br are based on a priori beliefs about the likely values of the parameters. Now, vector β  
can be written as: 
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Then, given the vectors pr the initial estimate for each parameter is given by 
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For the random term, a similar approach is followed. For the actual values contained in e, we 
assume a distribution for each ie , with a set of 2Q ≥  values ( )1,..., 'i i iQv v=v  with respective 

probabilities ( )1 2, ,..., 'i i i iQw w w w= .7 The prior distribution for v will be denoted by u. Now, we 
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and the value of the random term for an observation i equals 
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Consequently, model (5) can be transformed into: 
 

= +y XBp Vw  (10)

 
Now, the estimation problem for the unknown vector of parameters β  is reduced to the 
estimation of NR +  probability distributions of the support vectors, and the following 
constrained cross entropy minimization problem can be solved to obtain these estimates: 

                                                           
7 The distribution for the errors is usually assumed symmetric and centered around 0. Therefore 1i iQv v= − . A 

usual procedure for giving values to this vector is following the so-called 3-sigma rule, which amounts to fixing 
the extreme bounds as ±3 times the standard deviation of variable y. In our empirical analysis, we will assume 
identical a priori support vectors for each of the random disturbances. 
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The restrictions in (11b) ensure that the posterior probability distributions of the estimates and 
the errors are compatible with the observations. The restrictions in (11c) and (11d) are just 
normalization constraints. The estimated value of rβ  will be (cf. equation (7), but the vectors p 
now reflect a posteriori distributions): 
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Equation (12) provides point estimates for the coefficients. The GCE framework also offers 
opportunities to infer on the statistical significance of these point estimates. Golan (2001) shows 
that H0: βr = 0 (or to be more precise, a value very close to 0) can be tested for each r separately 
using the statistic:  
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Under H0, the statistic in (13) asymptotically follows a 2

1χ  distribution, if an a priori probability 
close to one is chosen for the “spike” prior qk corresponding to βr = 0. Hence, by comparing the 
observed value for the statistic in (13) to critical values from the  χ2 distribution with one degree 
of freedom, we can assess if technology flows between specific pairs of industries led to 
productivity increases or not.     
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4. Data Issues 
 
We use the methodology introduced above to estimate equations resembling production function 
(1), for 18 industries. The industry classification is given in Appendix A. Our choice for this 
specific aggregation level is mainly driven by data availability in the EU KLEMS (2007a,b, 2008) 
database, which is the most extensive set of data currently available. Despite the opportunities 
offered by this database, we are faced with some data restrictions. In order not to loose too much 
industry detail, we cannot include growth of capital intensities as a source of productivity growth. 
Although it does not fit standard mainstream production theory, one might argue that a lot of 
investment is induced by the emergence of improved or new capital goods. This would imply that 
parts of the returns to R&D carried out in capital goods industries are ‘misallocated’ to the 
investing industry if capital intensity is included as a separate determinant. In Section 5, we will 
test to what extent this effect has empirical relevance for the limited number of industries for 
which we actually have capital input data available. 

Further, since the number of countries for which the required data are available is relatively 
small, we decided to consider three subperiods, 1976-1983, 1984-1991 and 1992-1999. This 
leaves us with 36 observations per industry, since data for Denmark, Finland, France, Germany, 
Ireland, Italy, Japan, The Netherlands, Spain, Sweden, the UK and the US have been available.8 
In our benchmark regression, we assume that R&D activities are the sole driver of labor 
productivity growth, hence we do not include constants capturing “exogenous” productivity 
growth: 
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The abovementioned subperiods are indicated by t. The left hand side of the equation represents 
the annual average labor productivity growth for industry i in country c, as taken from the EU 
KLEMS (2007a,b, 2008) database, variable LP_I (gross value added per hour worked, volume 
index).9 The right hand side of (14) contains eighteen R&D intensities and the corresponding 
rates of return (the D

ijβ  coefficients). These refer to R&D expenditures by domestic industries, 
including the industry under consideration (i) itself.  

All R&D expenditures were taken from OECD’s STAN-ANBERD database. In order to 
arrive at an industry-level classification compatible with the EU KLEMS productivity data some 
updating procedures comparable to EU KLEMS procedures had to be adopted, for instance in 

                                                           
8  The data for Japan were taken from EU KLEMS (2007a) and the data for Ireland and Sweden from EU KLEMS 

(2008). For the remaining countries, the data originate from EU KLEMS (2007b). 
9  See Timmer et al. (2007) for an overview of the data and a description of construction procedures. 
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linking ISIC2 and ISIC3 industries to EU KLEMS industries.10 The value added figures were 
taken from EU KLEMS (2007a,b, 2008), variable VA. Both the R&D expenditures and the value 
added indicators are expressed in national currency and in current prices.11 To arrive at average 
observations for the subperiods, the annual R&D expenditures for the eight year-periods were 
added and so were the value added figures, after which the ratios of the sums were computed.12  

By adopting this specification, we assume that the rates of return to R&D remained equal 
over time. We acknowledge the restrictive nature of this approach, although mainstream 
economists would argue that profit-maximizing firms with rational expectations would lower 
their R&D expenditures in periods in which returns to a given level of R&D investments decline.   

Alternatively, we could have opted for a specification in which we would have looked at just 
one, 24 year-period. To obtain a reasonable number of degrees of freedom, we should have 
assumed that industries within a few categories would have had identical rates of return to R&D. 
This approach was followed by Verspagen (1997a), who assigned industries to the categories 
“high-tech”, “medium-tech” and “low-tech”. We feel such an approach is more restrictive than 
ours, since it would imply that returns would be equal even though R&D activities in different 
industries are characterized by different degrees of uncertainty (and, therefore, risk). 

We estimated equation (14) for 18 manufacturing industries. The industry classification can 
be found in the Appendix A. 
 
 
5. Results 
 
We first attempted to estimate (14) by means of traditional least squares techniques. For the sake 
of brevity, we do not present the full set of results. Discussion of a few results suffices to 
conclude that the estimation problem at hand is not suitable to be tackled by OLS. Estimated 
rates of return to R&D done in other industries range from -2357% to +3857%. Many of these 
huge (in an absolute sense) estimates appear not significant, however. The R2s range from 0.42 to 
0.78. Thus, the results suggest that R&D intensities are able to explain a substantial part of labor 
productivity growth rates indeed, but no reasonable interpretation can be given to estimates for 
single coefficients. These results underline the inconvenient status quo that followed Keller’s 
(1997, 1998) critique outlined in Section 2. 

In order to estimate equation (14) in an alternative way, we specified a minimum cross 
entropy problem shaped like equations (11). In the benchmark analysis, we took a common 
support vector with 3 elements (0.0, 0.5, 1.0) for all D

ijβ  parameters, for all industries i. This 
                                                           
10  The R&D dataset is available from the authors on request. 
11  Note that we did not use PPPs to correct for international differences in the costs of R&D projects. See 

Dougherty et al. (2007).  
12  We could also have opted for a fully dynamic specification. This would have required the determination of a lag 

structure, which we consider an issue beyond the scope of this paper. 
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implies that we assume that the range of feasible rates of return for own R&D efforts in industry 
i is a priori the same as the rate of return to R&D expenditures in any other industry j. With this 
support vector we impose our belief that only nonnegative rates of return of R&D are feasible in 
the medium- to long-run and averaged over firms in a country. We cannot think of a reason why 
R&D activity in one sector could affect the medium-run labor productivity performance in an 
industry negatively. Additionally, we set an upper bound to the rates of return of 100%. For 
specifying the support vectors vi for the error term, a three-point vector centered around 0 has 
been used. The upper and lower bounds were set following the “3-sigma rule”, which implies 
wider bounds if the dependent variable shows a large dispersion. Applying the 3-sigma rule is 
common practice in empirical studies that apply entropy econometrics approaches (following 
Pukelsheim, 1994). In order to test for the significance of estimated rates of return by means of 
the test statistic given in equation (13), we specified a prior q (0.999, 0.0005, 0.0005). The implied 
a prior rate of return very close to zero. If the observations draw the estimated distribution p~  far 
enough away from the prior with the large mass on 0.0, significant positive returns will follow.    

Table 1 reports the results for the estimations of equation (14) obtained by GCE along the 
lines set out above. The estimates for the rates of return of the own R&D intensity in each 
industry are emphasized. The second row from below gives the scaled condition number (see 
Belsley, 1991, p. 56), which is an indicator of the extent to which multicollinearity is present. A 
rule of thumb suggested by Belsley (1991, p. 129) is to consider multicollinearity a serious 
problem is this number exceeds 30. As the results show, multicollinearity is a problem in all 
industries considered, which again justifies our reliance on an alternative estimation method.   

The results on the main diagonal show that the rate of return to R&D conducted by the 
industry itself is significantly different from zero for five industries. These industries are 
“chemicals” (6), “office machinery” (12), “radio, tv and communication equipment” (14), 
“instruments” (15) and “motor vehicles” (16), which are all activities in which a lot of resources 
are spent on innovation (note that “chemicals” includes the production of pharmaceuticals). The 
rates of return are very high for “office machinery” (12) and “radio, tv and communication 
equipment” (14), up to about 70%. In the “other transport equipment” industry (17), we also 
find a point estimates larger than zero in the third digit, but this is not significant according to 
our yardstick. In all remaining industries, no results pointing towards positive labor productivity 
effects of own innovative activities can be found. 
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Table 1. GCE estimates of rates of return to R&D and R&D spillovers 
(column headers indicate industries for which labor productivity growth is explained, rows refer to potentially spillover-generating industries)  
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Food products, beverages and tobacco β1j 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83* 0.00 0.00 0.00 

Textiles, textile products, leather and footwear β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Wood and products of wood and cork β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pulp, paper, paper products, printing and publishing β4j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Coke, refined petroleum products and nuclear fuel β5j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Chemicals and chemical products β6j 0.06* 0.02 0.00 0.00 0.05 0.27* 0.07* 0.03 0.06* 0.04 0.05 0.58* 0.03 0.20* 0.00 0.03 0.01 0.03 

Rubber and plastics products β7j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Other non-metallic mineral products β8j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Basic metals β9j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fabricated metal products, except machinery and equipment β10j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Machinery and equipment, n.e.c. β11j 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 

Office, accounting and computing machinery β12j 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65* 0.00 0.00 0.00 0.16* 0.00 0.00 

Electrical machinery and apparatus, n.e.c. β13j 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radio, television and communication equipment β14j 0.04 0.00 0.03 0.66* 0.00 0.02 0.01 0.00 0.01 0.03 0.02 0.22* 0.03 0.72* 0.00 0.00 0.00 0.02 

Medical, precision and optical instruments β15j 0.00 0.00 0.04 0.00 0.03 0.00 0.02 0.00 0.13* 0.00 0.01 0.59* 0.00 0.01 0.08* 0.00 0.00 0.01 

Motor vehicles, trailers and semi-trailers β16j 0.01 0.00 0.00 0.00 0.01 0.29* 0.01 0.00 0.02 0.00 0.01 0.31* 0.00 0.24* 0.00 0.11* 0.03 0.00 

Other transport equipment β17j 0.00 0.03 0.02 0.00 0.14* 0.00 0.04 0.00 0.21* 0.00 0.01 0.93* 0.00 0.00 0.27* 0.00 0.02 0.00 

Furniture; manufacturing n.e.c. β18j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Number of observations 36 36 36 36 33 36 36 36 36 36 36 35 36 36 36 36 36 36 
Condition number 49 100 58 46 125 47 54 61 61 52 48 67 55 60 52 85 66 65 
Correlation coefficient  -0.31 0.02 0.17 -0.15 0.33 -0.27 0.02 -0.34 0.38 0.18 0.01 0.01 0.02 0.39 0.19 0.23 0.07 0.02 

 
* Estimates significantly different from 0.00075 at 10%;  
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all D

ijβ : (0.0, 0.5, 1.0); Associated prior distribution q: (0.999, 0.0005, 0.0005). 
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As mentioned, we specified identical support vectors and associated prior distributions for 
the rates of return to “own” R&D and R&D spillovers. Since R&D is purposefully done by firms 
in an industry to enhance their own performance and spillovers are a by-product by definition, 
we expect to have a much smaller proportion of significant rates of return for the off-diagonal 
cells in a table like Table 1, than for those on the main diagonal. The results confirm this 
expectation: whereas 5 out of 18 (almost 30%) cells on the main diagonal are significantly 
positive, only 18 out of 306 (less than 6%) off-diagonal cells appear to share this property.    

We find that many medium and high-tech industries generate productive spillovers to other 
industries. Our estimates show that R&D in the chemicals industry has a  positive impact on 
productivity in “food products” (1), “rubber and plastics”(7), “basic metals” (9), “office 
machinery” (12) and “office machinery” (14). It is also interesting to see that “instruments” (15), 
“motor vehicles”(16) and “other transport equipment” (17, which includes shipbuilding and 
aircraft manufacturing) do not enjoy very strong positive productivity effects of their R&D 
activities, but that other industries benefit from the spillovers these industries generated. These 
effects might well reflect the downstream transmission of innovation rents, rather than pure 
knowledge spillovers. Somewhat surprisingly, the computer industry (12) did not generate such 
spillovers. A plausible explanation might be that the positive impacts of innovation in the 
computer industry are predominantly recorded in the services sector, which is not part of the 
subject of our analysis. 

A number of low-tech industries such as “textiles” (2), “wood” (3), “glass and stone” (8) and 
“metal products” (10) do not benefit from any productive R&D or R&D spillover effects. As a 
consequence of this, the extent to which the right-hand side variables explain the labor 
productivity growth patterns is limited for many industries. Since conventional R2 statistics are 
not bound in the [0,1] interval in a GCE context, we present pairwise correlation coefficients 
between the predicted labor productivity growth rates and the actual growth rates to give an 
indication of the goodness of fit. We follow Arndt et al. (2002) in this respect.         

Like in most empirical work, we also find some counterintuitive results, such as the rate of 
return from R&D in “motor vehicles” to productivity in “chemicals”, or the strong link between 
R&D in the “food” industry to labor productivity in “instruments”. Testing several (dynamic) 
specifications of the regression equation should prove a useful avenue for future research. In the 
next section, we will report on a number of simpler robustness analyses that might shed more 
light on the plausibility of the benchmark results presented above. We will mainly focus on the 
effects of omitted variables, such as spillovers from abroad, investment in physical capital and 
effects of increased schooling.  
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Table 2. Sensitivity of estimates of rates of return to R&D and R&D spillovers (wider support vector) 
(column headers indicate industries for which labor productivity growth is explained, rows refer to potentially spillover-generating industries)  
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Food products, beverages and tobacco β1j 0.01 0.02 0.01 0.18* 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.83* 0.00 0.00 0.00 

Textiles, textile products, leather and footwear β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 

Wood and products of wood and cork β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pulp, paper, paper products, printing and publishing β4j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Coke, refined petroleum products and nuclear fuel β5j 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Chemicals and chemical products β6j 0.11 0.00 0.00 0.00 0.02 0.33* 0.07 0.03 0.04 0.06 0.09 0.26* 0.04 0.13* 0.00 0.02 0.01 0.03 

Rubber and plastics products β7j 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Other non-metallic mineral products β8j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Basic metals β9j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fabricated metal products, except machinery and equipment β10j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Machinery and equipment, n.e.c. β11j 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.02 0.00 

Office, accounting and computing machinery β12j 0.00 0.09 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.85* 0.02 0.00 0.00 0.18* 0.01 0.00 

Electrical machinery and apparatus, n.e.c. β13j 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Radio, television and communication equipment β14j 0.05 0.00 0.03 0.62* 0.00 0.01 0.00 0.00 0.01 0.03 0.04 0.12 0.07 0.81* 0.00 0.00 0.00 0.02 

Medical, precision and optical instruments β15j 0.00 0.01 0.07 0.00 0.05 0.00 0.06 0.00 0.18* 0.00 0.03 0.60* 0.00 0.01 0.09 0.00 0.00 0.05 

Motor vehicles, trailers and semi-trailers β16j 0.00 0.00 0.00 0.00 0.01 0.24* 0.01 0.00 0.03 0.00 0.02 0.21* 0.01 0.20* 0.00 0.14* 0.03 0.00 

Other transport equipment β17j 0.00 0.04 0.01 0.00 0.17* 0.00 0.05 0.00 0.18* 0.00 0.03 1.31* 0.00 0.00 0.27* 0.00 0.05 0.00 

Furniture; manufacturing n.e.c. β18j 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Number of observations 36 36 36 36 33 36 36 36 36 36 36 35 36 36 36 36 36 36 
Correlation coefficient  -0.32 0.08 0.25 -0.15 0.41 -0.27 0.07 -0.31 0.41 0.21 0.03 0.07 0.05 0.42 0.20 0.26 0.14 0.06 
* Estimates significantly different from 0.0015 at 10%;  
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all D

ijβ : (0.0, 1.0, 2.0); Associated prior distribution q: (0.999, 0.0005, 0.0005). 
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6. Sensitivity Analyses 
 
The results documented in Table 1 might not be robust for several reasons. Omitted variables 
might play a role. We will discuss the effects of including a number of additional variables below. 
We would like to consider sensitivity to the support vectors chosen first, because these are very 
specific to the estimation technique we propose. 

Table 2 presents the estimated results if the support vector has a larger maximum value than 
in the benchmark case. We increased the upper bound from 100% to 200%, to allow for the 
occasionally high rates of return to R&D (118-147%) found by Scherer (1982). The results show 
that the benchmark results are not very sensitive to this modification. One industry, 
“instruments” (15), appears not to have enjoyed significant productivity effects of its own 
innovative activities, but the point estimate is slightly higher than in the benchmark case. The 
most important implication of choosing a higher upper bound is the result that “chemicals” (6) 
does not yield a lot of spillovers to other industries, contrary to what we found before. In most 
cases, the level of significance dropped just below our threshold of 10%. In a qualitative sense, 
the width of the support vector does not appear to affect the results very much.     

We start our sensitivity analysis with respect to omitted variables by including a variable 
related to technology generated abroad. The dataset contains a few small open economies for 
which foreign R&D activities might be an important source of spillovers affecting productivity 
growth. The limited number of observations led us to the decision not to estimate effects of 
international interindustry spillovers, but to focus on the effects of international intraindustry 
spillovers (as opposed to, for example, Verspagen, 1997b). Neither did we include separate 
effects of R&D spillovers from individual countries, which would have been in the spirit of, 
among others, Coe and Helpman (1995). The effects of international intraindustry spillovers are 
captured by the rate of return F

iβ , estimated using an augmented version of (14): 
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For the effects of foreign intraindustry spillovers, we do not exclude negative productivity effects. 
Business stealing effects of successful foreign R&D could lead to reduced labor productivity 
growth rates if labor markets do not react immediately to decreased output or a slower output 
growth rate. To reflect this, we choose (-1.0, 0.0, 1.0) as the support vector for the foreign 
spillovers coefficient  The results can be found in Table 3. 

 



 18

  
Table 3. Sensitivity of estimates of rates of return to R&D and R&D spillovers (inclusion of international R&D spillovers) 
(column headers indicate industries for which labor productivity growth is explained, rows refer to potentially spillover-generating industries)  

   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Food products, beverages and tobacco β1j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Textiles, textile products, leather and footwear β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wood and products of wood and cork β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pulp, paper, paper products, printing and publishing β4j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Coke, refined petroleum products and nuclear fuel β5j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Chemicals and chemical products β6j 0.06* 0.01 0.00 0.01 0.06* 0.14* 0.05 0.02 0.05 0.03 0.03 0.64* 0.01 0.20* 0.03 0.04 0.01 0.02 

Rubber and plastics products β7j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Other non-metallic mineral products β8j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Basic metals β9j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fabricated metal products, except machinery and equipment β10j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Machinery and equipment, n.e.c. β11j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 

Office, accounting and computing machinery β12j 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63* 0.00 0.00 0.00 0.16* 0.00 0.00 

Electrical machinery and apparatus, n.e.c. β13j 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radio, television and communication equipment β14j 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.32* 0.02 0.72* 0.00 0.00 0.00 0.01 

Medical, precision and optical instruments β15j 0.00 0.00 0.04 0.00 0.03 0.00 0.02 0.00 0.13* 0.00 0.01 0.55* 0.00 0.01 0.16* 0.00 0.00 0.01 

Motor vehicles, trailers and semi-trailers β16j 0.01 0.00 0.01 0.00 0.01 0.17* 0.02 0.00 0.02 0.01 0.01 0.21* 0.01 0.24* 0.03 0.10* 0.03 0.02 

Other transport equipment β17j 0.00 0.04 0.02 0.00 0.13* 0.01 0.04 0.00 0.21* 0.00 0.02 0.91* 0.00 0.00 0.25* 0.00 0.02 0.00 

Furniture; manufacturing n.e.c. β18j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Foreign spillovers from the same industry βFj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Number of observations  36 36 36 36 33 36 36 36 36 36 36 35 36 36 36 36 36 36 
Correlation coefficients  0.27 -0.08 0.26 0.34 0.31 -0.04 0.20 0.09 0.38 0.27 0.32 0.07 0.47 0.39 0.35 0.29 0.22 0.20 

* Estimates significantly different from 0.00075  at 10%;  
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all D

ijβ : (0.0, 0.5, 1.0); Support vector for F
jβ : (-1.0, 0.0, 1.0); Associated prior distributions q: (0.999, 0.0005, 0.0005).  
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A first important result is that we do not find significant rates of return to foreign 
intraindustry spillovers. Apparently, these are very close to zero.13 Inclusion of this variable adds 
to the explanatory power of the model, however, since the unweighted average of the correlation 
coefficients increases from 0.05 for the specification without international R&D spillovers to 0.24 
for the specification including this potential source of productivity growth. 

The inclusion of foreign intraindustry spillovers does not affect the result that own R&D has 
positive productivity effects in “chemicals”, “office machinery” and “radio, tv and 
communication equipment” only. The estimated rate of return of domestic R&D in “chemicals” 
(6) is reduced, from 27% to 14% as a consequence of foreign spillovers. Two implausible 
interindustry spillover effects that were identified in the benchmark are no longer detected: R&D 
in “radio, tv and communication equipment” (14) does not have a large positive impact on 
“paper” (4) and the same holds for spillovers from “food” (1) to “instruments” (15). We also find 
some positive domestic spillover effects that we did not detect before, from “chemicals” (6) to 
“fuels” (5). This rate of return is not extremely high and just significant at 10%. Apart from these 
changes, the results remain largely unchanged. 

Another variable that is often considered as a driver of labor productivity growth is the 
accumulation of physical capital. In the long run, diminishing returns to investment might lead to 
almost zero effects, but over the 8-year periods we analyze high rates of investment might have 
an important impact. This might affect the estimated rates of return to R&D expenditures if part 
of the effects picked up by R&D in the benchmark equation should in fact be attributed to 
capital intensity growth. To investigate this issue, we estimated the following augmented version 
of (14): 
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To compute the average annual growth rate of capital intensities, the EU KLEMS variables 
H_EMP (hours worked by persons engaged) and CAP_QI (capital services volume index) have 
been used. The analysis could only be done for a subset of industries, since capital services data 
are lacking for a number of industries included in Table 1, 2 and 3. At a slightly higher level of 
aggregation, we can still consider the entire manufacturing sector, however. An important issue 
to be dealt with is the support vector and associated prior to be used for the capital elasticities βK. 
We decided to choose these in such a way that the implied expected values equal the industry-

                                                           
13  For four industries, the point estimate is negative. These are “fuels” (5), “office machinery” (12), “radio, tv and 

communication equipment” (14) and “motor vehicles” (16) Of course, the rates of return are very close to zero 
since the associated R&D intensities (all R&D expenditures in the same industry in 17 countries divided by the 
value added of the industry in the country considered) are very high. In terms of elasticities, the effects might 
well turn out to be sizable..  
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specific shares of capital compensation (variable CAP in the EU KLEMS database) in value 
added, averaged over the entire period. The lower bound of the support vector was set at zero, 
the center value at the expected value defined above and the upper bound at twice this expected 
value. As the prior, we used a uniform distribution (0.333, 0.333, 0.333). This choice prevents us 
from deciding whether the capital elasticity is significantly different from a specific value, but 
does not fix it too strongly at the capital share in value added. This allows for a useful analysis of 
the effects of including physical capital accumulation on the estimated rates of return to domestic 
R&D. 

The results are documented in Table 4. The numbers of observations are lower than for the 
specifications we presented so far. This is due to lack of capital services data for Ireland, Japan 
and Sweden in the releases of the EU KLEMS database we use. The correlation coefficients are 
considerably higher than in the benchmark (the unweighted average over industries amounts to 
0.19, as compared to 0.05 in the benchmark). For most industries, the estimated physical capital 
elasticity is far from the value implied by the average shares of capital compensation in value 
added. The sign of the deviations varies across industries. In “metals” (9+10), for example, our 
prior (0.27) is much higher than the GCE estimate (0.12), while in “machinery” (11) the estimate 
is much higher (prior: 0.24, GCE: 0.77). Generally speaking, the inclusion of capital does not 
have dramatic effects on the returns to own R&D, in the sense that similar industries appear to 
benefit from innovative efforts. In “chemicals” (6), the revenues of R&D are considerably 
lowered, however. In the benchmark (Table 1), we found a point estimate of 27%. Including 
capital, this value drops to 9%. The broad “electrical and optical equipment” industry (12-15) 
benefits from R&D done in the “radio, tv and communication equipment” (14) industry, which is 
an element of the broader industry considered. The broad “transport equipment” industry 
(16+17) appears not to enjoy labor productivity gains from its own R&D investments, whereas 
the “motor vehicles” part of this industry did in the benchmark. 

Concerning interindustry spillovers, we find corroboration for most of our previous results. 
The chemicals industry is an important supplier of productive spillovers again, to “fuels” (5) and 
to “electrical and optical equipment” (12-15). Spillovers from the transportation equipment 
industries (16 and 17) are detected again, and “instruments” (15) is again identified as a provider 
of productivity-enhancing technology to other industries, notably “fuels” (5) and “machinery” 
(11). In general, the rates of return are somewhat smaller than in the benchmark. Moreover, some 
spillovers that feature in Table 1 do not show up after inclusion of changes in physical capital 
intensities as an explanatory variable, such as those from “chemicals” (7) to “food” (1).           
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Table 4. Sensitivity of estimates of rates of return to R&D and R&D spillovers (inclusion of capital elasticities) 

(column headers indicate industries for which labor productivity growth is explained, rows refer to potentially spillover-generating industries) 
    1 2 3 4 5 6 7 8 9+10 11 12-15 16+17 18 
Food products, beverages and tobacco β1j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Textiles, textile products, leather and footwear β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wood and products of wood and cork β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pulp, paper, paper products, printing and publishing β4j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 

Coke, refined petroleum products and nuclear fuel β5j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Chemicals and chemical products β6j 0.00 0.00 0.00 0.00 0.11* 0.09* 0.02 0.01 0.00 0.00 0.07* 0.00 0.01 

Rubber and plastics products β7j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Other non-metallic mineral products β8j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Basic metals β9j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fabricated metal products, except machinery and equipment β10j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Machinery and equipment, n.e.c. β11j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26* 0.00 0.01 0.00 0.00 

Office, accounting and computing machinery β12j 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Electrical machinery and apparatus, n.e.c. β13j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Radio, television and communication equipment β14j 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.23* 0.00 0.01 

Medical, precision and optical instruments β15j 0.00 0.01 0.05 0.00 0.14* 0.00 0.10 0.00 0.00 0.16* 0.02 0.00 0.05 

Motor vehicles, trailers and semi-trailers β16j 0.00 0.00 0.00 0.00 0.00 0.32* 0.09 0.00 0.00 0.01 0.03 0.00 0.01 

Other transport equipment β17j 0.00 0.02 0.01 0.00 0.25* 0.00 0.06 0.00 0.00 0.04 0.06* 0.00 0.00 

Furniture; manufacturing n.e.c. β18j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Capital intensity growth βk 0.57 0.32 0.26 0.31 0.61 0.95 0.63 0.25 0.12 0.77 0.36 0.11 0.13 

Number of observations 27 27 27 27 24 27 27 27 27 27 27 27 27 
Correlation coefficient  0.42 0.54 0.34 -0.01 0.41 -0.05 0.55 -0.16 -0.27 0.33 0.52 0.11 -0.31 
* Estimates significantly different from 0.00075 at 10%;  
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all D

ijβ : (0.0, 1.0, 2.0); Support vector for K
jβ : industry-specific, lower bound 0.0; Associated prior distributions for D

ijβ  like in Table 1, uniform for K
jβ . 
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Table 5. Sensitivity of estimates of rates of return to R&D and R&D spillovers (correction for differences in labor quality) 
(column headers indicate industries for which labor productivity growth is explained, rows refer to potentially spillover-generating industries) 

    1 2 3 4 5 6 7 8 9+10 11 12-15 16+17 18 
Food products, beverages and tobacco β1j 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Textiles, textile products, leather and footwear β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Wood and products of wood and cork β2j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Pulp, paper, paper products, printing and publishing β4j 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Coke, refined petroleum products and nuclear fuel β5j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Chemicals and chemical products β6j 0.08* 0.01 0.00 0.07* 0.11* 0.16* 0.09* 0.03 0.03 0.06 0.10* 0.00 0.02 
Rubber and plastics products β7j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Other non-metallic mineral products β8j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Basic metals β9j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Fabricated metal products, except machinery and equipment β10j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Machinery and equipment, n.e.c. β11j 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.01 
Office, accounting and computing machinery β12j 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Electrical machinery and apparatus, n.e.c. β13j 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 
Radio, television and communication equipment β14j 0.05 0.00 0.04 0.02 0.00 0.01 0.00 0.00 0.01 0.05 0.27* 0.00 0.03 
Medical, precision and optical instruments β15j 0.00 0.00 0.02 0.00 0.05 0.00 0.07* 0.00 0.00 0.00 0.01 0.00 0.00 
Motor vehicles, trailers and semi-trailers β16j 0.00 0.00 0.00 0.01 0.01 0.50* 0.03 0.00 0.00 0.01 0.06 0.00 0.01 
Other transport equipment β17j 0.00 0.01 0.00 0.01 0.17* 0.00 0.09* 0.01 0.00 0.01 0.01 0.00 0.00 
Furniture; manufacturing n.e.c. β18j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Number of observations 24 24 24 24 22 24 24 24 24 22 24 24 24 
Correlation coefficient  0.02 -0.16 -0.14 -0.31 0.27 -0.14 0.20 -0.32 -0.11 0.05 0.77 -0.11 0.42 
* Estimates significantly different from 0.00075 at 10%;  
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all D

ijβ : (0.0, 0.5, 1.0); Associated prior distribution q: (0.999, 0.0005, 0.0005). 
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Finally, we used information on the quality of labor inputs available from the EU KLEMS 
database to offer more indications of the robustness of our results. Its variable LAB_QI gives 
information about the labor services used in the activities of the industries. Labor services do not 
only take hours into account, but also the skills of the persons supplying these hours. It might be 
that changes in labor productivity expressed in terms of value added per hour worked (the 
indicator used in our benchmark estimations) are affected by increases in the quality of the labor 
force. If so, parts of labor productivity growth due to investments in schooling and related 
activities have been attributed to R&D and R&D spillovers in our benchmark. To correct for this 
potential omitted variable problem, we estimate equation 
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The dependent variable indicates the growth of value added in excess of the growth of labor 
services. We present the results for equation (17) in Table 5. As a consequence of the limited 
availability of labor services data (especially for early years in our period of analysis), the number 
of observations is lower than in the benchmark. 

The correlation coefficients show that correcting the labor input indicator does not lead to an 
increase in the explanatory power of the model. On average, the differences are negligible. The 
high correlation coefficient for the broad “electrical and optical equipment” industry (12-15), 
stands out. Apparently, differences in quality of labor and in R&D efforts do a good job in 
explaining differences in labor productivity performance. By and large, the results of the 
benchmark estimates are confirmed: rates of return to own R&D are nonsignificant in most 
industries, with the important exceptions of “chemicals” and “electrical and optical equipment”. 
“Chemicals” is the main supplier of productive spillovers again. As opposed to the benchmark, 
spillovers from this industry have also positive effects on labor productivity in “paper etc.” (4) 
and “fuels” (5). The transport equipment industries (16 and 17) also generate productive 
spillovers, like in the benchmark estimates. The implausibly high rate of return for “paper etc.” 
(4) to R&D done in “radio, tv and communication equipment” (14) as found in estimating the 
benchmark equation disappears, most probably as a consequence of dropping specific country-
periods from the sample.    
 
 
7. Conclusions 
 
In this paper, we introduced a novel approach to the assessment of the impact of interindustry 
technology spillovers on labor productivity. In the late nineties, Keller (1997, 1998) published a 
very critical study about the results attained by this field, which had blossomed after the 



 24

emergence of R&D-driven economic growth in the decade before. Afterwards, the situation can 
best be characterized as a status quo: most scholars agree that technology spillovers play an 
important role in productivity growth, but there is no clear evidence of the impact of R&D 
conducted in specific industries on the productivity performance of others. This paper introduces 
an approach that might contribute to more knowledge concerning this important issue. Unlike 
the vast majority of empirical studies undertaken so far, we do not use classical least-squares 
estimation techniques, but rely on Generalized Minimum Cross Entropy (GCE) techniques. This 
toolbox of econometric methods is particularly geared towards situations in which data are ill-
behaved. In studies linking productivity growth to sources of spillovers, multicollinearity is often 
a big problem, as a consequence of which it is impossible to estimate the effects of R&D done in 
individual industries. This paper is the first one to approach these problems using GCE 
techniques. 

Our results derived from analyses of recent EU KLEMS productivity data and OECD R&D 
statistics show that with just a few exceptions, high-tech industries attain positive rates of return 
to their R&D investments (in the order of magnitude of 10% to 70%). Moreover, some industries 
benefit from innovation in many other industries, whereas others mainly rely on own R&D 
activities. We reported on a number of robustness checks, including estimating specifications 
with additional explanatory variables, such as intraindustry spillovers from abroad and changes in 
physical capital intensity changes. A robust finding is that the chemicals industry is an important 
generator of productive technology spillovers. To a somewhat lesser extent, this also holds for 
the transport equipment industry. The office machinery appears to attain a high rate of return on 
its own R&D activities, but does not contribute much to the performance of other industries. 
This could be due to our choice to focus on manufacturing industries. The most important 
spillover effects of the computer industry might be encountered in the services sector. This is a 
subject for future research. 

Besides studying spillover effects in services, the analysis in this paper can be extended in 
various ways. In our view, addressing the specification of the R&D-productivity equation would 
be a prime candidate. We do not employ the full potential of our dataset in terms of dynamic 
analyses. It should be possible to replicate firm-level studies like Los and Verspagen (2000), 
especially because GME can deal with non-stationary series of observations without having to 
incorporate cointegration formulations and the like. Improved estimates of the productivity 
effects of interindustry technology spillovers could also lead to reasonable calibrations of dynamic 
Computable General Equilibrium models, providing policy makers with improved forecasts of 
the effects of targeted, industry-level innovation policies. Such calibrations based on econometric 
work seemed simply impossible after Keller´s (1997, 1998) critique.    
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Appendix A: Industry Classification* 

nr. Name EUK nr. Name EUK 

1.  Food, beverages and tobacco 15t16 10. Fabricated metal products 28 

2. Textiles, textile, leather and 
footwear 

17t19 11. Machinery, n.e.c. 29 

3. Wood and products of wood and 
cork 

20 12. Office, accounting and computing 
machinery 

30 

4. Pulp, paper, paper products, 
printing and publishing 

21t22 13. Electrical machinery and apparatus, 
n.e.c. 

31 

5. Coke, refined petroleum and 
nuclear fuel 

23 14. Radio, television and communication 
equipment 

32 

6. Chemicals and chemical products 24 15. Medical, precision and optical 
instruments 

33 

7. Rubber and plastics 25 16. Motor vehicles, trailers and semi-
trailers 

34 

8. Other non-metallic mineral 
products 

26 17. Other transport equipment 35 

9. Basic metals 27 18. Manufacturing, n.e.c. 36t37 

* EUK refers to industry classification numbers in EU KLEMS (2007a,b, 2008). 
 


