On the Trade and Price Effects of Preferential Trade Agreements

Rod Falvey
School of Business, Bond University
Neil Foster
Vienna Institute for International Economics

WIIW, 12th January 2012

[WORK IN PROGRESS]

Introduction

- The number of PTAs has grown rapidly, with countries now members of multiple PTAs
 - The number has risen from around 25 in 1970 to nearly 300 in 2010 (WTO, 2011)
 - On average WTO countries are in 13 PTAs, up from 2 in 1985 (WTO, 2011)
 - Around half of PTAs are not strictly regional (WTO, 2011)
- Discussion of the impact on trade of PTAs usually couched in terms of Viner's concept of trade creation and diversion
 - Trade creation: PTA partners can now compete with domestic producers free of trade barriers
 - Trade Diversion: PTA partners now have preferential access to the domestic market relative to third parties

Introduction

- Most empirical studies of the PTAs-Trade relationship use some version of the gravity model
- PTA presence is usually captured by a dummy variable
 - A single PTA dummy taking the value one whenever two trade partners share a PTA
 - A number of dummies one for each PTA taking the value one whenever two trade partners are in a particular PTA
- The coefficient on the dummy variable gives a measure of the extent of trade creation
- Trade diversion may be captured by a separate set of dummies taking the value one if only one of the trade partners is in a particular PTA
- Now a considerable literature empirically estimating the effects of preferential trading arrangements (PTAs) on aggregate trade flows (e.g. Frankel et al, 1995 and 1996; Baier et al, 2008; Baier and Bergstrand, 2008,....)
 - PTAs are found to increase trade when a single PTA dummy is used, with recent results suggesting that trade is doubled
 - A wide variety of results are found when individual PTA dummies are used (i.e. trade creation, trade diversion, open bloc trade creation, no significant effect)
- Recently empirical studies have considered the impact of PTAs on other aspects of trade, such as trade specialisation (Martincus et al, 2009), trade structure (Egger et al, 2008; Foster et al, 2011), and the variety of trade (Foster et al, 2011)

Introduction

- It is recognised that the dummy cannot capture all the effects of PTA membership (Fugazza and Nicita, 2010; Anderson and Yotov, 2011)
- In particular, it does not capture the effects on bilateral trade flows not covered by the PTA.
 - PTAs are formed in the expectation that there will be preferential access for exports
 - The extent of preferential access will depend on whether competitors have access through this or other PTAs
- Can we do better than this and/or can we say something on how well the dummy approach is likely to work?
- Can we use a standard model to derive the relevant effects?

What Do We Do?

- Use a standard model to derive the effects of PTA membership on bilateral trade flows
 - general case
 - special case (not in this version)
- Infer PTA variables
- Present some preliminary estimates using the PTA variables in the general case

Model

- "Gravity with Gravitas" (Anderson and van Wincoop, AER, 2003)
- General equilibrium model
- n+1 countries each produces its own good fixed real output.
- Output of country 0 treated as numeraire
- Countries have identical CES preferences

Demand

Value of Exports from country i to j

$$X_{ij} = \frac{\left[\beta_i p_i t_{ij}\right]^{1-\sigma}}{R_j} p_j \bar{y}_j \tag{1}$$

where $R_j = \sum_{k=0}^{n} [\beta_k p_k t_{kj}]^{1-\sigma}$ is a price index;

 β_i is a demand parameter, \bar{y}_j is real output of j

 p_j is the price of j's output; $t_{ij} \ge 1$ is the unit trade cost factor between i and j

Market Clearing

Market clearing for output i

$$p_i \bar{y}_i = \sum_{k=0}^n X_{ik} = [\beta_i p_i]^{1-\sigma} \sum_{k=0}^n t_{ik}^{1-\sigma} \frac{p_k}{R_k} \bar{y}_k$$
 (2)

• Anderson and van Wincoop use market clearing to solve for $[\beta_i p_i]^{1-\sigma}$ which they then substitute in (1) to obtain the gravity equation

Gravity Equation 1

Gravity
$$X_{ij} = \frac{Y_i Y_j}{Y_W} \frac{t_{ij}^{1-\sigma}}{\Pi_i P_j}$$

where
$$\Pi_i \equiv \sum_{k=0}^n t_{ik}^{1-\sigma} \frac{\theta_k}{P_k}$$

and
$$P_{j} \equiv \sum_{k=0}^{n} t_{kj}^{1-\sigma} \frac{\theta_{k}}{\Pi_{k}}$$

are 'Multilateral Resistance' (MR) terms θ_k is the share of world income of country k is the (numeraire) income of country i

Gravity Equation 2

- Bilateral trade costs appear both directly and in MR terms
- MR terms captured in country(-time) fixed effects
- Estimate direct effects with standard variables distance, borders, common language etc.
- PTAs reduce trade costs dummy variable for PTA membership in gravity equation picks up the direct effects (i.e. on tip)
- But what of indirect effects?
 - through Π_i and P_j

Use equations (1) and (2) to explicitly solve for the effects of changes in trade costs on bilateral trade flows.

Note: holding real outputs constant

From (1)
$$\hat{X}_{ij} = -[\sigma - 1][\hat{p}_i + \hat{t}_{ij}] + \hat{p}_j - \hat{R}_j$$

where
$$\hat{R}_j = -[\sigma - 1] \sum_{k=0}^n m_{kj} \left[\hat{p}_k + \hat{t}_{kj} \right]$$

Substituting

$$\widehat{\boldsymbol{X}}_{ij} = -[\sigma-1] \left[\hat{\boldsymbol{t}}_{ij} - \sum_{k=0}^{n} m_{kj} \, \hat{\boldsymbol{t}}_{kj} \right] - [\sigma-1] \left[\hat{\boldsymbol{p}}_{i} - \sum_{k=1}^{n} m_{kj} \, \hat{\boldsymbol{p}}_{k} \right] \underbrace{+ \hat{\boldsymbol{p}}_{j}}_{\text{expenditure effect}} + \hat{\boldsymbol{p}}_{ij} \underbrace{+ \hat{\boldsymbol{p}}_{ij}}_{\text{effect}}$$

- where $\hat{y} = dy/y$ and m_{ij} is the share of country i in j's market
- The relative price changes will also depend on the trade cost changes.
- In principle we can solve for these from the market clearing conditions

From (2)
$$\hat{p}_i = [1 - \sigma]\hat{p}_i + \sum_{k=0}^n e_{ik} [[1 - \sigma]\hat{t}_{ik} + \hat{p}_k - \hat{R}_k]$$

where $e_{ij} \equiv \frac{X_{ij}}{p_i \bar{y}_i}$ is the (export) share of country j in the output of country i.

Substituting

$$\sigma \hat{p}_i - \sum_{k=0}^n e_{ik} \left[\hat{p}_k + [\sigma - 1] \sum_{j=1}^n m_{jk} \hat{p}_j \right] = -[\sigma - 1] \sum_{k=0}^n e_{ik} \left[\hat{t}_{ik} - \sum_{j=0}^n m_{jk} \hat{t}_{jk} \right]$$

Can write system of equations as

$$[D(\sigma) - S]\hat{p} = -D(\sigma - 1)[\hat{t}^e - E\hat{t}^m]$$

Which can be solved for the changes in relative prices as

$$\hat{p} = -D(\sigma - 1)[D(\sigma) - S]^{-1}[\hat{t}^e - E\hat{t}^m]$$

PTA 1

Suppose PTA membership reduces trade costs by proportion γ – i.e. $\hat{t}_{ij} = -\gamma$ if i and j are in a PTA

We can solve for $\hat{p}_i = b_i \gamma$ from market clearing Let \bar{X}_{ij} denote the pre-PTA value of exports of i to j.

Then
$$X_{ij} = \bar{X}_{ij} + dX_{ij} = \bar{X}_{ij} \left[1 + \hat{X}_{ij} \right]$$

PTA 2

So
$$lnX_{ij} \cong ln\bar{X}_{ij} + \hat{X}_{ij}$$

= $ln\bar{X}_{ij} + [\sigma - 1][l_{ij} - \bar{m}_j]\gamma - \{[\sigma - 1][b_i - \sum_{k=0}^n m_{kj}b_k] - b_j\}\gamma$

- where $I_{ij} = 1$ if i and j are in a PTA, = 0 otherwise
- m_j is the pre-PTA market share of countries in a PTA with j – a measure of the preferential access offered by j

General Case 1

Equation is

$$= \ln \bar{X}_{ij} + [\sigma - 1] \left[I_{ij} - \bar{m}_j \right] \gamma - \left\{ [\sigma - 1] \left[b_i - \sum_{k=0}^n m_{kj} b_k \right] - b_j \right\} \gamma$$

Direct effect $DE_{ijt} = [\sigma - 1][I_{ijt} - \overline{m}_{jt}]$

Relative price effect
$$RE_{ijt} = -[\sigma - 1] \left[b_{it} - \sum_{k=1}^{n} m_{kjt} b_{kt} \right]$$

Expenditure effect $EE_{jt} = b_{jt}$

Combined price effects $CE_{ijt} = RE_{ijt} + EE_{jt}$ Total PTA effects $TE_{ijt} = DE_{ijt} + CE_{ijt}$

Correlation Matrix for PTA Effects 2006

	DE	RE	EE	TE
DE	1			
RE	-0.0079	1		
EE	0.0567	0.6828	1	
TE	0.7078	0.6991	0.5577	1

General Case 2

Estimating equation

$$\begin{split} lnEXP_{ijt} &= \alpha_0 + \alpha_1 lnGDP_{it} + \alpha_2 lnGDP_{jt} + \alpha_3 lnPOP_{it} + \alpha_4 lnPOP_{jt} + \alpha_5 lnDIST_{ij} \\ &+ \alpha_6 LANG_{ij} + \alpha_7 ADJ_{ij} + \alpha_8 LOCK_{ij} + \Gamma Z_t + \delta_{i(t)} + \omega_{j(t)} + \tau_t + \vartheta_{ij} \\ &+ u_{ijt} \end{split}$$

Where Z_{\star} is the vector of PTA terms

Data

Data on (up to) 183 countries over the period 1976-2006

Trade data from COMTRADE via WITS

Other data from WDI, CEPII.

PTAs from WTO and GPTAD.

Econometric Issues

- Recent developments in the estimation of gravity models (Baldwin and Taglioni, 2006; Helpman et al, 2008; Santos-Silva and Tenreyro, 2006)
 - Particularly in the case of time-varying panels
- Account for zero trade flows
 - Using modified Heckman procedure or poisson regression
- Inclusion of a number of fixed effects
 - Time
 - Importer and Exporter (MR)
 - Time-varying importer and exporter (MR)
 - Bilateral-pair (endogeneity)

General Case 3

First add variable(s) to a standard gravity equation

- 1. Include l_{ijt} and \bar{m}_{jt} separately as trade creation and trade diversion effects; or
- 2. Include $l_{ijt} \bar{m}_{jt}$ as a single PTA variable.
- This includes only the direct effects the indirect effects are to be captured by country fixed effects.

Then add other effects

Results: PTA Dummy vs Direct Effect

	1	2	3	4	5	6
PTA	0.350***	0.441***	0.421***	0.297***	0.408***	0.245***
	(0.0122)	(0.0122)	(0.0124)	(0.0188)	(0.0126)	(0.0197)
PTA	0.345***	0.405***	0.423***	0.313***	0.410***	0.252***
	(0.0124)	(0.0123)	(0.0125)	(0.0192)	(0.0126)	(0.0199)
\bar{m}	0.165**	1.495***	-0.222**	-0.303***	-0.358*	-0.350***
	(0.0644)	(0.0655)	(0.107)	(0.0764)	(0.193)	(0.135)
$I - \overline{m}$	-0.401***	-1.747***	-0.111	0.0442	0.00762	0.131
	(0.0634)	(0.0647)	(0.106)	(0.0748)	(0.193)	(0.134)
Fixed effects						
Time	No	Yes	Yes	Yes	Yes	Yes
Imp/Exp	No	No	Yes	No	No	No
Country Pair	No	No	No	Yes	No	Yes
Imp -Time Exp -Time	No	No	No	No	Yes	Yes

PTA Effects Separately

	1	2	3	4	5	6
DE	0.0496***	0.0550***	0.0603***	0.0448***	0.0585***	0.0360***
	(0.00178)	(0.00177)	(0.00179)	(0.00274)	(0.00181)	(0.00284)
RE	-0.0134***	-0.0128***	-0.00301	0.00763***	-0.0186***	-0.00772***
	(0.00212)	(0.00210)	(0.00273)	(0.00188)	(0.00403)	(0.00273)
EE	0.308***	0.284***	0.0723**	-0.0675***	0.192***	0.106***
	(0.0233)	(0.0231)	(0.0288)	(0.0204)	(0.0440)	(0.0298)
Fixed Effects						
Time	No	Yes	Yes	Yes	Yes	Yes
Imp / Exp	No	No	Yes	No	No	No
Country-Pair	No	No	No	Yes	No	Yes
Imp-Time Exp-Time	No	No	No	No	Yes	Yes

PTA Effects Combined 1

	1	2	3	4	5	6
DE	0.0485***	0.0540***	0.0603***	0.0446***	0.0585***	0.0360***
	(0.00177)	(0.00177)	(0.00179)	(0.00274)	(0.00181)	(0.00284)
CE	0.00547***	0.00466***	0.00107	0.00341**	-0.00699**	-0.00133
	(0.00155)	(0.00154)	(0.00205)	(0.00143)	(0.00303)	(0.00208)
Fixed Effects						
Time	No	Yes	Yes	Yes	Yes	Yes
Imp /Exp	No	No	Yes	No	No	No
Country-Pair	No	No	No	Yes	No	Yes
Imp-Time Exp-Time	No	No	No	No	Yes	Yes

PTA Effects Combined 2

	1	2	3	4	5	6
TE	0.0240***	0.0259***	0.0342***	0.0123***	0.0416***	0.0117***
	(0.00119)	(0.00118)	(0.00139)	(0.00127)	(0.00156)	(0.00168)
Fixed Effects						
Time	No	Yes	Yes	Yes	Yes	Yes
Imp /Exp	No	No	Yes	No	No	No
Country-Pair	No	No	No	Yes	No	Yes
Imp-Time Exp-Time	No	No	No	No	Yes	Yes

Conclusions

The presence of PTAs has 3 effects on bilateral trade flows

- Direct effect
- Relative price effect
- Expenditure effect
- Only (an approximation to) the direct effect captured by a PTA dummy
- Direct effect does not seem to be highly correlated with the other (price) effects