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Abstract  

This paper uses the adaptive Lasso estimator to determine the variables important for 
economic growth. The adaptive Lasso estimator is a computationally very simple 
procedure that can perform at the same time model selection and consistent parameter 
estimation. The methodology is applied to three data sets, the data used in Sala-i-Martin et 
al. (2004), in Fernandez et al. (2001) and a data set for the regions in the European Union. 
The results for the former two data sets are similar in several respects to those found in the 
published papers, yet are obtained at a negligible fraction of computational cost. 
Furthermore, the results for the European regional data highlight the importance of human 
capital for economic growth. 
 
 
Keywords: adaptive Lasso, economic convergence, growth regressions, model selection 
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1 Introduction

The econometric analysis of economic growth and potential economic convergence of per

capita GDP has been a major research topic in the last decades. This highly active field of

research has been revived among others by the influential contributions of Baumol (1986),

Barro (1991) and Barro and Sala-i-Martin (1992). Numerous different econometric approaches

and techniques have been employed, as surveyed by Durlauf et al. (2005). Yet, few definite

results have emerged, in the words of Durlauf et al. (2005, p. 558):

“The empirical study of economic growth occupies a position that is notably uneasy. Under-

standing the wealth of nations is one of the oldest and most important research agendas in

the entire discipline. At the same time, it is also one of the areas in which genuine progress

seems hardest to achieve. The contributions of individual papers can often appear slender.

Even when the study of growth is viewed in terms of a collective endeavor, the various papers

cannot easily be distilled into a consensus that would meet standards of evidence routinely

applied in other fields of economics.”

The largest part of the empirical studies undertaken deals with so-called growth (or Barro)

regressions, in which the average growth rate of per capita GDP is regressed on initial per

capita GDP and a potentially large set of additional explanatory variables. Such equations

have their original motivation in first order approximations (around the steady state) of the

Solow-Swan or Ramsey-Cass-Koopmans versions of the one-sector growth model, as illustrated

in Barro (1991) or Mankiw et al. (1992). Based on these approximations numerous researchers

have estimated vast amounts of equations including a large variety of additional explanatory

variables. Due to the relatively weak link between the specified equations and growth theory

such empirical studies have to a certain extent to be seen as data mining exercises.
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Given the data mining character of growth regressions many empirical strategies have been

followed to separate the wheat from the chaff. Sala-i-Martin (1997b) runs two million re-

gressions and uses a modification of the extreme bounds test of Leamer (1985), used in the

growth context earlier also by Levine and Renelt (1992), to single out what he calls ‘signif-

icant’ variables. Fernandez et al. (2001) and Sala-i-Martin et al. (2004) use Bayesian model

averaging (BMA) techniques to identify important growth determinants. Doing so necessi-

tates the estimation of a large number of potentially ill-behaved regressions (e.g. in case of

near multi-collinearity of the potentially many included regressors). Typically it is impossible,

due to the sheer number of possible models, to get exact BMA estimates and therefore only

some approximate estimates based on Markov chain Monte Carlo methods are computed.

Clearly, also the specification of priors in the context of growth regressions is a delicate issue

given that little prior information is available concerning either the relevance of individual

variables or the number of variables relevant. In this respect the work of Magnus et al. (2009)

is interesting in that it provides a computationally simple approach to BMA that is based on

specific priors with a clear interpretation. Hendry and Krolzig (2004) use, similar to Hoover

and Perez (2004), a general-to-specific modelling strategy to cope with the large amount of

regressors while avoiding the estimation of a large number of equations. Clearly, also in a

general-to-specific analysis a certain number of regressions, typically greater than one, has to

be estimated.

In this paper we determine the variables important for economic growth by resorting to

recently developed statistical techniques designed to achieve at the same time model selec-

tion and consistent parameter estimation. In particular we use the so-called adaptive Lasso

(Least Absolute Shrinkage and Selection Operator) estimator, a variant of the Lasso estima-

tor (Tibshirani, 1996), proposed by Zou (2006) which we briefly describe in Section 2. The
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adaptive Lasso estimator is an example of a penalized least squares estimator. Due to their

strong computational benefits, these types of estimators have received a lot of attention in

the recent statistical literature, but have not yet been applied within the context of economic

growth.

The approach we use here has several advantages. First, as mentioned above, it is com-

putationally very cheap. Using e.g. the algorithm proposed by Efron et al. (2004), the

entire sequence of regressions which implicitly considers all submodels roughly has the same

computational cost as just one single OLS regression including all regressors. Second, the

procedure can generally handle ill-behaved regressions or the case where there are more ex-

planatory variables than observations. This is an advantage compared to general-to-specific

approaches. Third, the version of the estimator employed in this paper is scale independent,

see Section 2, i.e. it adapts to changes of units in the variables just like the OLS estimator.

This is an advantage of the adaptive LASSO estimator over and above many other related

estimation procedures currently investigated in the statistics literature, such as the Lasso

estimator, the SCAD estimator (Fan and Li, 2001), or the elastic net (Zou and Hastie, 2005)

which do not share this property. Finally, for those who prefer to use classical statistical

methods over Bayesian methods and estimates based on a single model over averages, the

adaptive Lasso provides exactly that.

We apply the method to several data sets, where two of them are well-known data sets taken

from widely cited papers. Note also that, compared to a typical BMA analysis, no prior

choice concerning model size has to be made but the model size is itself an outcome of the

procedure. The first data set is the data presented in Sala-i-Martin et al. (2004), containing

67 explanatory variables for 88 countries. The second one is the data set investigated in

Fernandez et al. (2001), which is in turn based on data used in Sala-i-Martin (1997b) and
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contains 41 explanatory variables for 72 countries. The third data set we use comprises the

255 European NUTS2 regions in the 27 member states of the European Union and contains

48 explanatory variables. The results for the first two data sets are in several aspects similar

to the findings in the original papers. For both data sets the adaptive Lasso estimator selects

slightly less than 15 explanatory variables, with about 10 of them coinciding with the most

important ones of the original papers (measured there by posterior inclusion probabilities).

All coefficient estimates have the expected signs and plausible values. The results for the

regional data (for which fewer core economic data are available to act as explanatory variables)

indicate the importance of human capital for economic growth, proxied by medium and high

education.

This paper is organized as follows. In Section 2 we describe the statistical methods that we

apply. Section 3 contains the empirical analysis and results, and Section 4 briefly summarizes

and concludes. Two appendices follow the main text. Appendix A describes the regional

data set and Appendix B presents the results of the adaptive LASSO estimation sequence

graphically.

2 The Adaptive Lasso Estimator

The adaptive Lasso estimator, a variant of the Lasso estimator, is a special case of the general

class of penalized least squares (PLS) estimators. For a linear regression model y = Xβ + ε

(y, ε ∈ RN , X ∈ RN×k, β ∈ Rk), a PLS estimator β̂ of β is defined as the solution of the

minimization problem

min
β∈Rk

‖y −Xβ‖2 + λN pen(β), (1)

where pen(β) is the penalty function and λN the so-called tuning parameter. Clearly, different
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types of penalty terms give rise to different estimators. The general class of Bridge estimators

was introduced by Frank and Friedman (1993) and refers to estimators defined by (1) with

pen(β) =
∑k

j=1 |βj |γ . Note that γ = 2 corresponds to the well-known Ridge estimator.

For γ ≤ 1, due to the structure of the underlying optimization problem, coordinates of

the estimated coefficient vector β̂ can (potentially) be exactly equal to zero and in that

sense the resulting estimator can be viewed to also perform model selection. The case γ =

1 where the penalty term is given by the l1-norm of the coefficient vector corresponds to

the Lasso estimator. This estimator was treated separately in Tibshirani (1996) who also

introduced the name Lasso. The adaptive Lasso estimator, as introduced in Zou (2006), has

a randomly weighted l1 penalty function defined by pen(β) =
∑k

j=1 |βj |/|β̃j |ϑ, where β̃ is

any
√
N -consistent ‘initial’ estimator of β, typically the OLS estimator of the full model (if

available). We stick to this choice of β̃ together with using ϑ = 1, since then the estimator

becomes scale-independent in the sense that replacing a regressor xj (1 ≤ j ≤ k) by a scalar

multiple, say cxj with c ∈ R, will result in an estimator where the corresponding component

β̂j is now replaced by 1
c β̂j .

The asymptotic properties of the adaptive Lasso estimator (and PLS estimators in general)

mainly depend on the choice of the tuning parameters λN as N goes to infinity. Under stan-

dard assumptions on the regression model (iid errors εi with mean zero and finite variance;

X ′X/N → C as N →∞ for some positive definite matrix C), the following holds for the adap-

tive Lasso estimator. If λN converges to a finite number, the estimator is tuned conservatively,

i.e. it performs conservative model selection, finding the correct zeros with probability less to

one but choosing only correct models asymptotically. If λN →∞ as N →∞ and λN/N → 0,

the estimator is tuned consistently, i.e. it performs consistent model selection, finding the

correct zeros with probability equal to one. While the latter regime seems to be preferable,
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it should be noted that consistently tuned estimators are not without problems since they

generally exhibit inferior distributional properties compared the corresponding conservatively

tuned or unpenalized estimator. Among those issues are unbounded estimator risk (Leeb and

Pötscher, 2008) and large confidence intervals (Pötscher and Schneider, 2008).

We now discuss computational issues of the adaptive Lasso estimator. Solutions to the min-

imization problem defining this estimator can be computed very efficiently exploiting the

specific structure of the problem. It can be shown that the components of the solution to

the corresponding optimization problem are piecewise linear in the tuning parameter λN , see

e.g. Rosset and Zhu (2007). Exploiting this property, the estimator can easily be computed

for all tuning parameters λN ∈ [0,∞), leading to so-called (piecewise linear) solution paths

for the coefficients corresponding to each variable. These solution paths are initiated at λN

equal to infinity where all coefficients are equal to zero and ensued up to λN equal to zero

corresponding to the OLS estimator (in case it is uniquely defined). In each step along this

sequence, one variable is either included or removed from the current ‘active’ subset, i.e. the

set containing the variables whose coefficients are not equal to zero in that step, as illus-

trated in Figure 1 and Figure 2 in Appendix B for the Sala-i-Martin et al. (2004) data set.

These figures should be read as follows. First note that on the horizontal axis λN is drawn

in decreasing order, running from ∞ to 0, which is standard for these plots in the literature.

On the horizontal axis the steps of the sequence are plotted equidistantly, e.g. in Figure 1 the

first twenty steps are plotted and in between each of these steps the estimated coefficients are

linear in λN . This implies that here the scaling of the horizontal axis is in general not linear

with respect to the tuning parameter λN . In the example of Figure 1 the value of the tuning

parameter at which the first estimated coefficient starts to become non-zero is λN = 0.51.

The numbers on the right hand side of the graph indicate the variable number, e.g. the index
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Figure 1: Coefficient paths of adaptive Lasso estimation for the Sala-i-Martin et al. (2004) data set

for the first 20 steps of the adaptive Lasso estimation sequence (zoom of Figure 2). The vertical line

at λN = 0.0012 indicates the optimal tuning parameter λN chosen by cross-validation. See Section 2

for an explanation of the plot.

26 refers to the share of expenditure of government consumption of GDP in 1961 (for the

variable abbreviations and their numbers for the Sala-i-Martin et al. (2004) data see Table 1).

The (dash-dotted) line corresponding to such an index plots the coefficient of this variable as

a function of the tuning parameter. The vertical line at λN = 0.0012 indicates the optimal

choice of the tuning parameter according to cross-validation, see below.

To provide a ‘final’ subset of variables together with a corresponding estimate of the parameter

vector different approaches are used to choose the tuning parameter, with the most common

one given by cross-validation. This procedure is known to potentially lead to conservative

model selection, i.e. it may lead to the inclusion of some variables whose true coefficients

are equal to zero, see e.g. Leng et al. (2006). Given the favorable results obtained by

cross-validation in a variety of experiments and the fact that conservatively tuned estimators

possess more desirable distributional properties, as mentioned above, the results presented in
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this paper are based on cross-validation. We provide the value of λN selected this way for each

data set in the corresponding plots, yet we emphasize that this is merely a technical parameter

which cannot be compared for different data sets and does not carry further information with

regard to the application at hand.

3 Empirical Analysis

As mentioned in the introduction, the empirical analysis is performed for three different data

sets. These are the data sets used in Sala-i-Martin et al. (2004), in Fernandez et al. (2001) and

a data set covering the 255 NUTS2 regions of the European Union. In the discussion below

we retain the variable names from the data files we received from Gernot Doppelhofer for the

Sala-i-Martin et al. (2004) data and also use the original names used in the file downloaded

from the homepage of the Journal of Applied Econometrics for the Fernandez et al. (2001)

data to facilitate the comparison with the results in these papers.

3.1 Sala-i-Martin, Doppelhofer and Miller Data

The data set considered in Sala-i-Martin et al. (2004) contains 67 explanatory variables for 88

countries. The variables and their sources are described in detail in Table 1 in Sala-i-Martin

et al. (2004, p. 820–821). The dependent variable is the average annual growth rate of real

per capita GDP over the period 1960–1996. In Table 1 we present the sequence of adaptive

Lasso moves (i.e. the sequence of variables in- respectively excluded from the set of active

variables as λN → 0) for this data set. As already discussed in the previous section, graphical

information concerning the whole sequence of estimated coefficients as a function of the tuning

parameter λN is presented in Figure 2 in Appendix B and Figure 1 in Section 2.
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The full regressor matrix comprising the constant and all 67 explanatory variables is almost

multi-collinear, with a reciprocal condition number of 9.38 × 10−20. The full OLS estimator

is thus very imprecisely defined at best. To be precise, in order to invert the X ′X matrix

the numerical tolerance has to be set to an extremely small number. To avoid using the

ill-defined OLS estimator we acknowledge the (numerical) multi-collinearity in the regressor

matrix and use as initial estimator the (standard) Lasso estimator at the end of the solution

path, i.e. for λN = 0. Due to continuity of the coefficient paths in the tuning parameter, this

corresponds to the solution of the normal equations with the smallest l1-norm. One could also

use different regularized initial estimators, e.g. the Ridge estimator, for which, however, the

resulting estimator would not be scale-invariant anymore and additionally a choice concerning

the Ridge parameter would have to be made. Note that for the two other data sets considered

we use the OLS estimator as initial estimator since for those no multi-collinearity problems

arise.1

Choosing the tuning parameter by cross-validation leads to a model with 15 regressors includ-

ing the constant. The estimation results are presented in Table 2. The following 14 variables

are important to explain cross-country growth, listed in alphabetical order of variable abbre-

viation, where we also show the sign of the corresponding coefficient in parenthesis: BUDDHA

(fraction of population Buddhist in 1960, positive), CONFUC (fraction of population Confu-

cian in 1960, positive), EAST (East Asian dummy, positive), GDE (average share of public

expenditure on defense, positive), GDP (log per capita GDP in 1960, negative), GEEREC
1It has been suggested to us to also experiment with using as initial estimator the coefficients obtained

from the simple regressions of the growth rate of per capita GDP separately on each variable and the constant.

This, however, did not lead to sensible results, which could stem from the fact that this initial estimator is not

in general consistent.

12



1 + Const ( 1) 27 + ECORG (16) 53 + TROPPOP (64)

2 + GVR61 (26) 28 + GDE (20) 54 + LHCPC (34)

3 + GDE (20) 29 + POP65 (51) 55 − SPAIN (60)

4 + P (45) 30 + SIZE (58) 56 + MALFAL (37)

5 + IPRICE (30) 31 − GVR61 (26) 57 + NEWSTATE (40)

6 + EAST (15) 32 + LIFE (35) 58 + SPAIN (60)

7 + TROPICAR (63) 33 + POP (50) 59 + SCOUT (57)

8 + BUDDHA ( 6) 34 + ABSLATIT ( 2) 60 + TOTIND (62)

9 + GEEREC (22) 35 + SQPI (47) 61 + PI (46)

10 + CONFUC (10) 36 + CIV ( 8) 62 + DENSI (13)

11 + LAAM (31) 37 + POP15 (49) 63 + LIFE (35)

12 + MALFAL (37) 38 + EUROPE (18) 64 + YRSOPEN (67)

13 + REVCOUP (55) 39 + LT100CR (36) 65 + OIL (41)

14 + GDP (21) 40 + PRIGHTS (48) 66 + RERD (54)

15 + SAFRICA (56) ∗∗ 41 + ENGFRAC (17) 67 + WARTIME (65)

16 + MINING (38) 42 + DENS (11) 68 + HERF (28)

17 + OTHFRAC (44) 43 + PRIEXP (52) 69 + WARTORN (66)

18 + GGCFD (23) 44 + PROT (53) 70 + OPEN (42)

19 + SPAIN (60) 45 + GVR61 (26) 71 + ORTH (43)

20 + DENSC (12) 46 + COLONY ( 9) 72 + LANDAREA (32)

21 + MUSLIM (39) 47 + HINDU (29) 73 + SOCIALIST (59)

22 − GDE (20) 48 − MALFAL (37) 74 + DPOP (14)

23 + GOVSH61 (25) 49 + BRIT ( 5) 75 + LANDLOCK (33)

24 + H (27) 50 + AIRDIST ( 3) 76 + CATH ( 7)

25 + GOVNOM1 (24) 51 − LIFE (35) 77 + TOT1DEC (61)

26 + FERT (19) 52 + ZTROPICS (68) 78 + AVELF ( 4)

Table 1: Sequence of adaptive Lasso moves for the Sala-i-Martin et al. (2004) data. The entries in

the table read as follows: The integers enumerate the step, ‘+’ indicates inclusion of a variable in the

corresponding step, whereas ‘−’ refers to exclusion of a variable. The included/excluded variable is

referenced by name as well as by its number in the data base, listed in parenthesis in the above table.

The set of active variables based on cross-validation is given by the variables included in the active

set up to the step indicated by ∗∗.
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β̂AL sdZOU tZOU rk(Ppost) E(post)

Const 0.024139 0.004868 4.959203

BUDDHA 0.011779 0.003219 3.659490 16 0.002340

CONFUC 0.023542 0.005946 3.959658 9 0.011212

EAST 0.014604 0.002346 6.224814 1 0.017946

GDE 0.035172 0.032333 1.087783 45 0.000952

GDP −0.000790 0.000386 −2.045769 4 −0.005849

GEEREC 0.043222 0.036496 1.184297 48 0.002720

GVR61 −0.041468 0.015460 −2.682270 18 −0.004594

IPRICE −0.000069 0.000016 −4.437095 3 −0.000065

LAAM −0.001902 0.000943 −2.017295 11 −0.001901

MALFAL −0.001512 0.000465 −3.253112 7 −0.003957

P 0.015468 0.003412 4.532908 2 0.021374

REVCOUP −0.001382 0.000685 −2.016397 41 −0.000205

SAFRICA −0.001010 0.000337 −2.995597 10 −0.002265

TROPICAR −0.005602 0.001578 −3.551155 5 −0.008308

Table 2: Estimation results for the Sala-i-Martin et al. (2004) data. The first three result columns

correspond to the adaptive Lasso estimates, with the standard errors and t-values computed as de-

scribed in Zou (2006). The column labelled rk(Ppost) reports the ranks according to posterior inclusion

probabilities from Sala-i-Martin et al. (2004, Table 3, p. 828–829) and the column labelled E(post)

reports the unconditional posterior means computed from Sala-i-Martin et al. (2004, Table 4, p. 830)

for mean prior model size 7.

(average share of public expenditure on education, positive), GVR61 (share of expenditure on

government consumption of GDP in 1961, negative), IPRICE (investment price, negative),

LAAM (Latin American dummy, negative), MALFAL (index of malaria prevalence in 1966,

negative), P (primary school enrollment rate, positive), REVCOUP (number of revolutions

and coups, negative), SAFRICA (sub-Saharan Africa dummy, negative), TROPICAR (frac-

tion of country’s land in tropical area, negative). The coefficient signs are all as expected and

also the magnitude of the coefficients is plausible and not out of line from other findings in

the literature, see also below.
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With two exceptions (GDE and GEEREC) the coefficients are statistically different from

zero, with the standard errors computed according to Zou (2006) based on Tibshirani (1996).

The two variables with insignificant coefficients are both related to government expenditures,

namely the average share of public expenditure on defense (GDE) and the average share of

public expenditure on education (GEEREC). Out of the government expenditure related vari-

ables only the government consumption share of GDP (GVR61) appears to be significant with

negative impact on growth. The negative coefficient sign is in line with a stylized relationship

in public finance referred to as Wagner’s law (formulated by the German economist Adolph

Wagner in the nineteenth century), which states that richer countries have a higher public

expenditure share. Thus, in case of convergence in which richer countries grow slower, this is

consistent with a negative coefficient of the government consumption share of GDP. However,

like many empirical growth studies we do not find strong evidence for government expen-

diture related variables to be major determinants of economic growth. Here we find three

government expenditure variables, but two of them with coefficients that are not significantly

different from zero.

The fourth results column in Table 2 displays the ranks according to the posterior inclusion

probabilities computed from Sala-i-Martin et al. (2004, Table 3, p. 828–829). There is a sub-

stantial degree of similarity of our results to theirs in that we find 8 of their top 10 variables

(and 9 of their top 14 variables). Of the top 14 variables of Sala-i-Martin et al. (2004) we

do not find the following. Population density in coastal areas in the 1960s (DENSC), life

expectancy in 1960 (LIFEEXP), fraction of GDP in mining (MINING), the dummy for Span-

ish colony (SPAIN) and the number of years open (YRSOPEN). Our results suggest instead

the importance of the following variables (where we only report the statistically significant

variables, which excludes the two mentioned government expenditure variables). The fraction
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of Buddhists in the population (BUDDHA), the government consumption share of GDP in

the 1960s (GVR61) and the number of revolutions and coups (REVCOUP).

In the last column of Table 2 we report the (unconditional with respect to inclusion) posterior

means of the estimated coefficients as given in Sala-i-Martin et al. (2004, Table 4, p. 830).

The signs of our coefficient estimates coincide with the signs of the posterior means reported

in the final column throughout all variables. Some of the posterior means of Sala-i-Martin et

al. (2004) are substantially smaller than our estimates. This reflects the fact that, especially

for the variables with high inclusion probability ranks, the inclusion probabilities are very

small. This in turn leads to small unconditional posterior means, which clearly reflects the

shrinkage character of model averaging.

3.2 Fernandez, Ley and Steel Data

The data set used by Fernandez et al. (2001) is based on the data set used in Sala-i-Martin

(1997b). In particular they select a subset of the Sala-i-Martin data that contains the 25

variables singled out as important by Sala-i-Martin (1997b). These variables are available

for 72 countries. To these they add further 16 variables which are also available for these

72 countries, resulting in 41 explanatory variables in total. The dependent variable is the

average annual growth rate of real per capita GDP over the period 1960–1992. A detailed

description of the variables and their sources is contained in the working paper Sala-i-Martin

(1997a, Appendix 1).

Cross-validation (see Table 3 for the sequence of variables included) leads to an equation

including 16 explanatory variables counting the intercept. Graphical information concern-

ing the sequence of estimated coefficients as a function of the tuning parameter is given in

Appendix B in Figures 3 and 4.
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1 + GDPsh560 ( 4) 16 + Muslim (35) 31 + RFEXDist (10)

2 + LifeExp ( 3) 17 + NEquipInv (12) 32 + WarDummy (22)

3 − GDPsh560 ( 4) 18 + LabForce (42) ∗∗ 33 + Catholic (29)

4 + Confucious (30) 19 + BlMktPm (15) 34 + Rev&Coup (21)

5 + SubSahara (18) 20 + EcoOrg ( 6) 35 + Foreign ( 9)

6 + EquipInv (11) 21 + Buddha (28) 36 + Age (26)

7 + LatAmerica (17) 22 + CivlLib (24) 37 + Popg (40)

8 + GDPsh560 ( 4) 23 + SpanishCol (39) 38 + AbsLat (25)

9 + Const ( 1) 24 + English ( 8) 39 + Area (16)

10 + HighEnroll (19) 25 + FrenchCol (32) 40 + YrsOpen ( 7)

11 + Mining ( 5) 26 + OutwarOr (14) 41 + std(BMP) (13)

12 + RuleofLaw (38) 27 + BritCol (27) 42 + Jewish (34)

13 + Hindu (33) 28 + Protestants (37) 43 + PolRights (23)

14 + PrScEnroll ( 2) 29 + PublEdu (20) 44 + Work/Pop (41)

15 + EthnoLFrac (31) 30 + PrExports (36)

Table 3: Sequence of adaptive Lasso moves for the Fernandez et al. (2001) data set. See caption to

Table 1 for further explanations.

The following variables are selected, in alphabetic ordering of variable name: Confucius (share

of population Confucian, positive), EquipInv (equipment investment, positive), EthnoLFrac

(ethnolinguistic fractionalization, positive), GDPsh560 (log of per capita GDP in 1960, neg-

ative), HighEnroll (enrollment rates in higher education, negative), Hindu (share of popula-

tion Hindu, negative), LabForce (size of labor force, positive), LatAmerica (dummy for Latin

America, negative), LifeExp (life expectancy in 1960, positive), Mining (fraction of GDP in

mining, positive), Muslim (share of population Muslim, positive), NEquipInv (non-equipment

investment, positive), PrScEnroll (primary school enrollment in 1960, positive), RuleofLaw

(rule of law, positive) and SubSahara (dummy for sub-Saharan Africa, negative). Again,

negative and positive indicate the signs of the corresponding coefficients.

Our results concerning variable selection correspond to a large extent with those of Fernandez
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β̂AL sdZOU tZOU rk(Ppost)
Const 0.059002 0.008513 6.931117

Confucious 0.056703 0.008732 6.493496 2

EquipInv 0.162682 0.025104 6.480282 4

EthnoLFrac 0.001475 0.000737 2.000760 28

GDPsh560 −0.011876 0.001536 −7.732135 1

HighEnroll −0.028726 0.012228 −2.349162 34

Hindu −0.013690 0.005989 −2.285798 19

LabForce 2.6×10−8 1.5×10−8 1.771539 25

LatAmerica −0.007057 0.001635 −4.317139 13

LifeExp 0.000719 0.000127 5.664690 3

Mining 0.021357 0.006051 3.529288 11

Muslim 0.000978 0.000401 2.436605 6

NEquipInv 0.003127 0.001034 3.023599 12

PrScEnroll 0.003888 0.001623 2.395375 14

RuleofLaw 0.006382 0.001762 3.621853 7

SubSahara −0.018488 0.002445 −7.562503 5

Table 4: Estimation results for the Fernandez et al. (2001) data. The final column reports the rank

according to posterior inclusion probabilities from Fernandez et al. (2001, Table I, p. 569). See caption

to Table 2 for further explanations.

et al. (2001, Table I, p. 569) with respect to posterior inclusion probabilities. In particular

11 of the 15 variables included in our results are among the top 15 of the variables of Fer-

nandez et al. (2001). The 4 of their top 15 variables that are not included in our results

are, ordered according to decreasing posterior inclusion probability, given by years of open-

ness (YrsOpen), degree of capitalism (EcoOrg), and the fractions of Protestants (Protestants)

and of Buddhists (Buddha) in the population. The 4 differing variables that we obtain by

applying the adaptive Lasso estimator are the measure of ethnolinguistic fractionalization

(EthnoLFrac, positive), enrollment rate in higher education (HighEnroll, negative), fraction

of Hindus in the population (Hindu, negative) and size of the labor force (LabForce, positive).
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The coefficient for the size of the labor force, a variable that is meant to capture the size of

the economy, is significantly different from zero at the 10% level but not at the 5% level. As a

side remark note that the small value for the coefficient corresponding to the size of the labor

force stems from the fact that Fernandez et al. (2001) use employed persons in their data

base, and not e.g. employed persons in thousands or millions. For reasons of comparability

we have decided not to change the scaling of this variable. The negative sign of the coefficient

corresponding to the high education enrollment rate may merely reflect the fact that countries

with a well and broadly functioning higher education system in the 1960s have mainly been

rather well-developed rich countries which have subsequently grown below average.

3.3 European Regional Data

The third data set we analyze is a regional data set containing 48 explanatory variables for

the 255 NUTS2 regions in the 27 member states of the European Union. The data and

variables are described in Appendix A. The dependent variable is the average annual growth

rate of per capita GDP over the period 1995–2005. On a regional level it is more difficult

to obtain core economic data, hence many of the variables listed in Table 8 in Appendix A

are related to infrastructure characteristics (meant in a very broad sense e.g. also including

dummy variables whether the regions are located on the seaside or at country borders) and

labor market variables (unemployment and activity rates, as well as some broad education

characteristics in the working age population). Given that there are both large intra- and

inter-country differences in the economic performance of the European regions our set of

variables to perform the adaptive Lasso estimation sequence contains country dummies for

the 19 out of the 27 countries that consist of more than just one region.

Cross-validation leads to termination of the estimation sequence at step 13, resulting in an
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1 + Const ( 1) 28 + EREL0 (33) 55 − Const ( 1)

2 + ShSM (44) 29 + gPOP ( 3) 56 + DUMc10 (56)

3 + ShSH (43) 30 − ARL0 (41) 57 + ShLLL (46)

4 + EREL0 (33) 31 + EREH0 (31) 58 + DUMc26 (67)

5 + GDPCAP0 ( 2) 32 + URT0 (38) 59 + DUMc20 (62)

6 + DUMc6 (54) 33 + RegPent27 (15) 60 + DUMc15 (61)

7 + ARL0 (41) 34 + RegObj1 (16) 61 + Settl (12)

8 + Capital (17) 35 + Seaports (19) 62 + Dist.de71 (47)

9 − EREL0 (33) 36 + DUMc12 (58) 63 + Temp (28)

10 + AccessRail (26) 37 + ShCE0 ( 5) 64 + DUMc21 (63)

11 + DUMc27 (68) 38 + DUMc1 (50) 65 + OUTDENS0 ( 7)

12 + URT0 (38) 39 + URH0 (35) 66 + ARH0 (39)

13 + DUMc14 (60) ∗∗ 40 + ShJK0 ( 6) 67 + RoadDens (21)

14 + EMPDENS0 ( 9) 41 + URL0 (37) 68 + Const ( 1)

15 + DUMc5 (53) 42 + DUMc11 (57) 69 + DUMc23 (65)

16 + ERET0 (34) 43 + RegCoast (13) 70 + DUMc22 (64)

17 + AccessAir (25) 44 − URH0 (35) 71 + DUMc2 (51)

18 + DUMc9 (55) 45 + DistCap (48) 72 + AccessRoad (27)

19 + URM0 (36) 46 + Hazard (29) 73 + URH0 (35)

20 + ARM0 (40) 47 + INTF (10) 74 − ARH0 (39)

21 + DUMc3 (52) 48 + DUMc13 (59) 75 + RegBoarder (14)

22 + TELF (11) 49 + Airports (18) 76 + ConnectAir (23)

23 + DUMc24 (66) 50 + ART0 (42) 77 + ARH0 (39)

24 − URT0 (38) 51 + HRSTcore (30) 78 + RailDens (22)

25 + shGFCF (49) 52 + ARL0 (41) 79 + EREM0 (32)

26 + POPDENS0 ( 8) 53 + ShSL (45) 80 + ConnectSea (24)

27 + AirportDens (20) 54 + ShAB0 ( 4)

Table 5: Sequence of adaptive Lasso moves for the regional data set including country dummies for

all countries consisting of more than one region. See caption to Table 1 for further explanations.
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equation with 11 regressors including the intercept, see Tables 5 and 6. Graphical information

concerning the sequence of estimated coefficients as a function of the tuning parameter is given

in Appendix B in Figures 5 and 6.

The included explanatory variables and the coefficient signs are in alphabetical order: Ac-

cessRail (measure of accessibility by railroad, negative), ARL0 (activity rate of low educated

in 1995, negative), Capital (dummy for capital city, positive), GDPCAP0 (log of per capita

GDP in 1995, negative), ShSH (share of high educated in labor force, positive), ShSM (share

of medium educated in labor force, positive) and URT0 (unemployment rate total in 1995,

negative). Furthermore, three country dummies are selected: DUMc6 (dummy for Germany,

negative), DUMc14 (dummy for Ireland, positive) and DUMc27 (dummy for UK, negative).

The coefficient for the activity rate of low educated (ARL0) is significantly different from

0 only at the 10% level and the coefficient for the unemployment rate total (URT0) is not

significantly different from 0 even at the 10% level. The signs of the coefficients are (with

exception of AccessRail) in line with expectations. With respect to rail accessibility it should

be noted that European railroad infrastructure has been built to a very large degree before

the sample period of 1995–2005. In particular a large number of the regions that are best

accessible by railroads have experienced fast growth and development in much earlier peri-

ods than over the sample period and are now slower growing regions with high development

levels. Some well-connected regions hosting from today’s perspective ‘old industries’, as e.g.

the German Ruhr area, even experience difficulties in the industrial restructuring process in

the sample period. These two observations explain the negative coefficient for AccessRail.

Clearly, this example again highlights the need for careful interpretation of growth regression

results.

The set of human capital and labor market variables included in the specified equation hints
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β̂AL sdZOU tZOU

Const 0.151051 0.010037 15.048697

AccessRail −0.001065 0.000247 −4.304885

ARL0 −0.004462 0.002465 −1.809736

Capital 0.008043 0.000854 9.416480

GDPCAP0 −0.014692 0.001032 −14.235610

ShSH 0.058607 0.007617 7.693931

ShSM 0.016201 0.003677 4.405531

URT0 −0.005236 0.003975 −1.317379

DUMc6 −0.007992 0.001163 −6.870098

DUMc14 0.002599 0.000496 5.237420

DUMc27 −0.002211 0.000578 −3.827470

Table 6: Estimation results for the regional data set including country dummies for all countries

consisting of more than one region. See caption to Table 2 for further explanations.

at the importance of a well-educated labor force for economic growth.2 Of course, a large

share of highly educated people in the labor force requires as a complement the presence of

sufficiently many workplaces where these skills are required, i.e. enough companies offering

a sufficiently large number of jobs demanding medium or high skills and education. Also

the negative coefficient for the activity rate of low educated has to be interpreted the same

way, i.e. taking into account the complementarity with typically low value added creating

activities. Due to the relatively short time span of only 10 years, using initial values of the

explanatory variables may not completely resolve these potential endogeneity issues.

It is worth noting that only three country dummies appear to have explanatory power. These

cover two poor growth performers Germany and the UK, and the ‘Celtic tiger’ Ireland. In
2It is important to note here again that the available data mainly allow to capture the influence of human

capital. There are no variables that measure or at least proxy physical capital and also proxies for technology

are essentially absent. The only exception is share of gross fixed capital formation in gross value added in the

initial period. Scarcity of data clearly limits any quantitative study of regional growth to date.
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this respect it is to a certain extent surprising that none of the country dummies for formerly

centrally planned Central and Eastern European (CEE) countries (with more than one region)

is selected by the adaptive LASSO procedure.

4 Summary and Conclusions

In this paper we propose to use the adaptive Lasso estimator to determine the variables rel-

evant for explaining economic growth. The adaptive Lasso estimation sequence essentially

has the same computational cost as a single OLS regression and simultaneously performs

model selection and consistent parameter estimation. Given the large uncertainty concerning

potential growth determinants, reflected in large sets of explanatory variables, a consistent

or conservative forward selection procedure avoiding the estimation of potentially ill-behaved

regressions including large numbers of variables appears to be particularly useful. The pro-

posed classical methodology avoids both the estimation and averaging of large numbers of

models using (either a classical or) a Bayesian framework and also avoids pitfalls related to

inference in general-to-specific model selection procedures.3

The proposed methodology is implemented for three data sets, namely the data used in Sala-

i-Martin et al. (2004), in Fernandez et al. (2001) and a data set covering the regions of the

European Union member states. The results for the former two well-studied data sets are

quite in line with the findings in the original papers. Yet these results are obtained at a

negligible fraction of computational cost. For the Sala-i-Martin et al. (2004) data set we find

12 significant explanatory variables (in an equation comprising 14 explanatory variables) using

the t-values according to Zou (2006). 9 of these 12 variables are among the top 14 variables
3For classical model averaging and subsequent inference in the context of growth regressions see Wagner

and Hlouskova (2009).
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with respect to posterior inclusion probability as given in Sala-i-Martin et al. (2004). The

findings for the Fernandez et al. (2001) data set also exhibit a high degree of similarity with the

findings in the original paper. Here we find 15 explanatory variables, with one of them (size of

the labor force) not significant at the 5% level. The set of selected variables contains 11 of the

top 14 variables of Fernandez et al. (2001), again according to posterior inclusion probability.

For both data sets the sets of variables excluded with our approach compared to the findings

in the original papers as well as the sets of included significant explanatory variables not found

to be important in the original papers are plausible. Furthermore, the findings obtained for

the regional data set (for which only a small number of core economic variables is available)

hint at the importance of human capital for economic growth. The results obtained for this

data set have to be interpreted with some caution due to two reasons. First, many of the

variables included are infrastructure and labor market variables since at the regional level

many ‘typical’ macroeconomic variables are not available. Second, the short time span of the

data set may imply that some of the variables are endogenous despite the usage of initial

values for many variables. This is an issue less pertinent in the other two more long-run data

sets.

The findings in this paper strongly indicate that the adaptive Lasso estimator is indeed

an estimation and model selection procedure that can be fruitfully employed in the growth

regressions context.
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Appendix A: Description of Regional Data Set

In Table 7 we display the 27 EU member states, the abbreviation we use for the countries, as

well as the number of NUTS2 regions in each of the countries. The list of variables is described

in Table 8. The base year for price indices is 2000. All variables described as ‘initial’ and

whose variable name ends with 0 display 1995 values. For most of the variables for which

we report Eurostat as source the variables used here have been constructed by subsequent

calculations based on raw data retrieved from Eurostat.

AT Austria (9) FI Finland (5) MT Malta (1)

BE Belgium (11) FR France (22) NL Netherlands (12)

BG Bulgaria (6) GR Greece (13) PL Poland (16)

CV Cyprus (1) HU Hungary (7) PT Portugal (5)

CZ Czech Rep. (8) IE Ireland (2) RO Romania (8)

DE Germany (39) IT Italy (21) SE Sweden (8)

DK Denmark (1) LT Lithuania (1) SI Slovenia (1)

EE Estonia (1) LU Luxembourg (1) SK Slovak Rep. (4)

ES Spain (16) LT Latvia (1) UK United Kingdom (35)

Table 7: Country abbreviations, names and number of NUTS2 regions in brackets.
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Appendix B: Graphics

Figure 2: Coefficient paths of adaptive Lasso estimation for the Sala-i-Martin et al. (2004) data set.

The vertical line at λN = 0.0012 indicates the optimal tuning parameter λN chosen by cross-validation.

See Section 2 for an explanation of the plot.

32



Figure 3: Coefficient paths of adaptive Lasso estimation for the Fernandez et al. (2001) data set. The

vertical line at λN = 0.00051 indicates the optimal tuning parameter λN chosen by cross-validation.

See Section 2 for an explanation of the plot.

Figure 4: Zoom of Figure 3.
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Figure 5: Coefficient paths of adaptive Lasso estimation for the European regional data set. The

vertical line at λN = 0.0031 indicates the optimal tuning parameter λN chosen by cross-validation.

See Section 2 for an explanation of the plot.

Figure 6: Zoom of Figure 5.
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