

The Vienna Institute for International Economic Studies

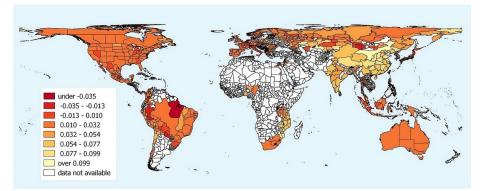
Seminar in International Economics **17 September 2018**

Human Capital, Technology Diffusion and Total Factor Productivity Growth in Regions

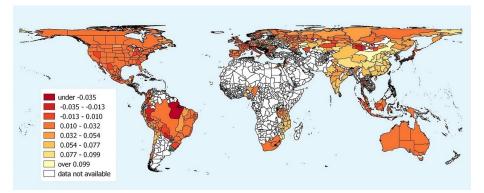
Anja Kukuvec Vienna University of Economics and Business (WU)

This seminar series is an activity in the framework of <u>FIW</u> ('Forschungsschwerpunkt Internationale Wirtschaft'), which is a project designed to build a center of excellence in research on International Economics, funded by the Austrian Ministry for Digital and Economic Affairs (BMDW).

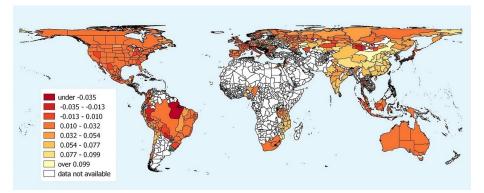
Human Capital, Technology Diffusion and Total Factor Productivity Growth in Regions


Anja Kukuvec Vienna University of Economics and Business Institute for International Economics anja.kukuvec@wu.ac.at

FIW-wiiw Seminars in International Economics Vienna, September 17th 2018


1/30

REGIONAL GROWTH 1995-2010


REGIONAL GROWTH 1995-2010

▶ Substantial disparities of GDP pc growth between regions

Regional Growth 1995-2010

- ▶ Substantial disparities of GDP pc growth between regions
- Spatial dependence of regions

MOTIVATION

Drivers of regional per capita growth

 ▷ Standard neoclassical growth theory: physical and human capital accumulation and technological progress (Solow, 1956; Mankiw, Romer & Weil, 1992)
 ⇒ Long-term per capita growth is only determined by the **exogenous** growth rate of technology (TFP growth)

MOTIVATION

Drivers of regional per capita growth

- ▷ Standard neoclassical growth theory: physical and human capital accumulation and technological progress (Solow, 1956; Mankiw, Romer & Weil, 1992)
 ⇒ Long-term per capita growth is only determined by the **exogenous** growth rate of technology (TFP growth)
- Benhabib & Spiegel (1994): technological progress is not exogenous but dependent on the stock level of human capital and its interaction with backwardness

 \Rightarrow Presumption that an educated labor force is better at creating, implementing and adopting new technologies from abroad

MOTIVATION

Drivers of regional per capita growth

- ▷ Standard neoclassical growth theory: physical and human capital accumulation and technological progress (Solow, 1956; Mankiw, Romer & Weil, 1992)
 ⇒ Long-term per capita growth is only determined by the **exogenous** growth rate of technology (TFP growth)
- Benhabib & Spiegel (1994): technological progress is not exogenous but dependent on the stock level of human capital and its interaction with backwardness

 \Rightarrow Presumption that an educated labor force is better at creating, implementing and adopting new technologies from abroad

- Spatial dependence
 - ▷ Spatial externalities of technology (e.g. Ertur & Koch, 2007; Fischer, 2011)
 - \Rightarrow Technology diffusion is influenced by geographical distance

RESEARCH QUESTION

► Do human capital and technology diffusion play a role in explaining regional differences in technological progress?

RESEARCH QUESTION

- ► Do human capital and technology diffusion play a role in explaining regional differences in technological progress?
- ► How does regional technology diffuse across regions?

TECHNOLOGY DIFFUSION BY BENHABIB & SPIEGEL (1994)

$$\frac{\dot{A}_i(t)}{A_i(t)} = g(H_i(t)) + c(H_i(t)) \frac{A_m(t) - A_i(t)}{A_i(t)}, \quad i = 1, ..., N$$
(1)

where $A_i(t)$ is the level of technology in region i at time t, $H_i(t)$ is its exogenous stock of human capital, $A_m(t)$ is the level of technology in the region with highest level of technology (technology leader) at time t

- Technological progress depends on stock of human capital and technology adoption from abroad
- $\blacktriangleright~g(H_i(t))$ is the endogenous region specific growth rate driven by human capital \rightarrow domestic innovation
- $\blacktriangleright \ c(H_i(t))$ is the speed of technological "catch-up" of region i to the leading region m
- ▶ $g(H_i(t))$ and $c(H_i(t))$ are non-decreasing functions of H_i

IMPLICATIONS

- ► The Benhabib & Spiegel (B&S) model (1994) implicitly presumes that a region only adopts technology from the technology leader
- Supposing a region can also benefit from technology spillovers of other regions
 - \Rightarrow Impose a spatial econometric model setting on the B&S model

Spatial Durbin Model (SDM)

$$\boldsymbol{y} = \alpha \boldsymbol{\iota}_N + \rho \boldsymbol{W} \boldsymbol{y} + \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{W} \boldsymbol{X} \boldsymbol{\theta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I}_N)$$
 (2)

$$\boldsymbol{y}$$
 dependent variable (TFP growth rate) $(N \times 1)$

- lpha scalar of the intercept
- ι vector of ones $(N \times 1)$
- $\rho \qquad$ spatial autoregressive coefficient where $-1 < \rho < 1$
- $oldsymbol{W}$ spatial weight matrix, row standardized (N imes N)
- \boldsymbol{X} matrix of explanatory variables $(N \times K)$
- β vector of coefficients of explanatory variables $(K \times 1)$
- $\boldsymbol{\theta}$ coefficient of spatially lagged explanatory variables $(K \times 1)$
- ϵ error term $(N \times 1)$
- N number of observations (regions)
- K number of explanatory variables

▶ $X = [h \ a \ h \circ a \ Z]$, where h is a vector of human capital stocks, a is a vector of technology gaps with $a_i = \frac{A_m}{A_i}$, and Z is a matrix of further control variables

 \Rightarrow Definition of ${\pmb X}$ based on B&S model when assuming that c and g are linear functions of H_i

TECHNOLOGY DIFFUSION

- ▶ The model specification allows for technology spillovers via three channels
 - **Technological distance** to the technology leader
 - **4** Human capital, which determines the speed of technology adoption
 - Geographical distance ⇒ Regions have better access to technology resources of neighbours than of non-neighbours
- Global technology spillovers

► Cross-section of 569 regions in 30 countries (15 non-OECD countries)

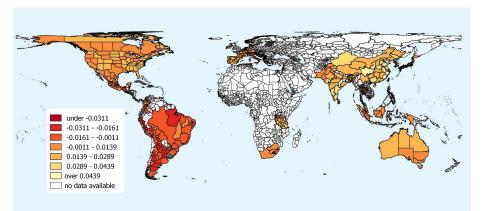
- ► Average annual growth rate in period 1980-2005
- Regions at the most disaggregated administrative or statistical division of countries where data was available (often provinces)
 Europe: NUTS-2 (except for DEU, GBR: NUTS-1)
- ▶ Main source: Gennaioli et al. (2014)
 - $\,\vartriangleright\,$ In some cases needed to aggregate regions to higher statistical unit
 - \Rightarrow Eurostat Regional Database for population weights

Data

 Construct measure for total factor productivity consistent with Benhabib & Spiegel (2005):

$$lnA_{it} = lnY_{it} - \frac{1}{3}lnK_{it} - \frac{2}{3}lnL_{it}$$
(3)

where A_{it} is TFP, Y_{it} is GDP, K_{it} is physical capital and L_{it} is population of region i at time t respectively


- $\,\triangleright\,$ GDP in current purchasing power US\$ values
- Derive estimates for regional stocks of physical capital: national physical capital stock × share of each region in national GDP (estimates for country physical capital stocks from PWT 8.0)

► Measure for human capital stocks: average years of schooling

- ▷ Methodology by Barro & Lee (2013)
- \triangleright Initial levels (year 1980)

Geographical data on the location of each region: Natural Earth Database

DATA - ESTIMATES FOR TFP GROWTH RATES 1980-2005

Specification	(1)	(II)	(111)	(IV)	(V)	(VI)
h	0.111^{***}	0.019	0.011	0.012	0.013	0.011
	(0.021)	(0.050)	(0.035)	(0.048)	(0.036)	(0.058)
a	0.055^{***}	0.026^{*}	0.053^{***}	0.050^{***}	0.056^{***}	0.025^{**}
	(0.010)	(0.014)	(0.013)	(0.014)	(0.013)	(0.005)
$\boldsymbol{h} \circ \boldsymbol{a}$	0.022^{***}	0.025^{***}	0.026^{***}	0.021^{***}	0.026^{***}	0.006**
	(0.004)	(0.005)	(0.005)	(0.005)	(0.005)	(0.002)
Wh			0.028	-0.071^{*}	-0.008	-0.065^{*}
			(0.037)	(0.041)	(0.040)	(0.038)
Wa			-0.035^{***}	-0.100^{***}	-0.034^{**}	-0.031^{**}
			(0.015)	(0.019)	(0.015)	(0.005)
$oldsymbol{W}oldsymbol{h}\circoldsymbol{a}$			-0.020^{***}	0.012^{*}	-0.017^{***}	0.006**
			(0.005)	(0.007)	(0.006)	(0.002)
ρ			0.704^{***}	0.095	0.634^{***}	0.036
			(0.031)	(0.060)	(0.037)	(0.060)
Country FE	NO	YES	NO	YES	NO	YES
Add. controls	NO	NO	NO	NO	YES	YES
R^2	0.260	0.720	0.265	0.736	0.490	0.748
adj. R^2	0.256	0.704	0.257	0.720	0.473	0.727
log L	1725	2005	2097	2218	2122	2229
N	569	569	569	569	569	569

Table: Estimation results

Notes Additional controls: Inoilgas, Inpopden, capcity, invcoast, malaria, latitude. W is a k-nearest neighbour matrix with k=5. Constant not reported in table. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

INTERPRETATION OF EFFECTS

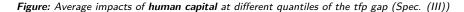
Taking the non-linearity of the interaction term into consideration (consistent with Balli & Sorensen (2013))

► Linear regression model:

$$\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{h}'} = \boldsymbol{I}_N \beta_1 + \mathsf{diag}(\boldsymbol{a}) \beta_3 \tag{4}$$

► Spatial Durbin Model (Piribauer & Wanzenböck, 2016):

$$\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{h}'} = (\boldsymbol{I}_N - \rho \boldsymbol{W})^{-1} (\boldsymbol{I}_N \beta_1 + \text{diag}(\boldsymbol{a}) \beta_3 + \boldsymbol{W} \theta_1 + \boldsymbol{W} \text{diag}(\boldsymbol{a}) \theta_3)$$
(5)


INTERPRETATION OF EFFECTS

▶ When the matrix of partial derivatives is summarized as in LeSage & Pace (2009), the effect of a main term is conditional on the *average* level of the other main term

Variables	Lower 0.01	Mean	Upper 0.99		
	Average direct impact				
Human capital $m{h}$ Technology gap $m{a}$	$0.186 \\ 0.179$	$0.286 \\ 0.244$	$\begin{array}{c} 0.388\\ 0.310\end{array}$		
	Average indirect impact				
Human capital $m{h}$ Technology gap $m{a}$	$-0.354 \\ -0.288$	$-0.241 \\ -0.217$	$-0.134 \\ -0.149$		
	Average total impact				
Human capital $m{h}$ Technology gap $m{a}$	$0.017 \\ 0.010$	$0.045 \\ 0.027$	$0.077 \\ 0.045$		

Table: Impact estimates, without country fixed effects (Spec. (III))

► In order to demonstrate the impact of the non-linearity ⇒ also compute the effect when the other main term is evaluated at different deciles of its distribution

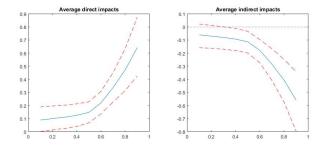
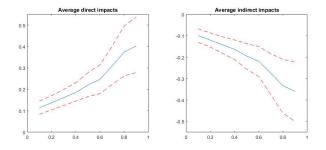
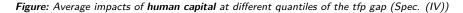




Figure: Average impacts of tfp gap at different quantiles of human capital (Spec. (III))

Variables	Lower 0.01	Mean	Upper 0.99		
	Average direct impact				
Human capital $m{h}$ Technology gap $m{a}$	$\begin{array}{c} 0.104 \\ 0.140 \end{array}$	$0.222 \\ 0.196$	$0.342 \\ 0.252$		
	Average indirect impact				
Human capital $m{h}$ Technology gap $m{a}$	$-0.215 \\ -0.182$	$-0.107 \\ -0.128$	$0.002 \\ -0.067$		
	Average total impact				
Human capital $m{h}$ Technology gap $m{a}$	$0.049 \\ 0.029$	$\begin{array}{c} 0.115 \\ 0.068 \end{array}$	$0.185 \\ 0.106$		

Table: Impact estimates, with country fixed effects (Spec. (IV))

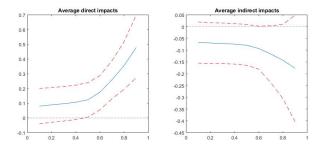
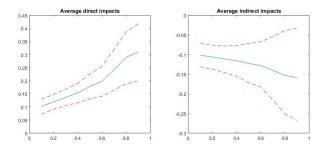
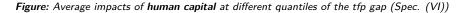



Figure: Average impacts of tfp gap at different quantiles of human capital (Spec. (IV))



Variables	Lower 0.01	Mean	Upper 0.99		
	Average direct impact				
Human capital $m{h}$	0.160	0.289	0.403		
Technology gap $oldsymbol{a}$	0.180	0.243	0.304		
Lnoilgas	-17.483	-1.999	13.109		
Lnpopden	-0.170	-0.072	0.030		
Capcity	-0.116	0.352	0.835		
Invcoast	-1.730	0.555	2.771		
Malaria	-0.094	-0.021	0.044		
Latitude	-0.026	-0.003	0.022		
	Avera	age indirect i	mpact		
Human capital $m{h}$	-0.364	-0.248	-0.114		
Technology gap $m{a}$	-0.274	-0.206	-0.140		
Lnoilgas	-11.136	10.506	32.061		
Lnpopden	-0.002	0.097	0.203		
Capcity	-0.770	-0.271	0.273		
Invcoast	-1.690	0.941	3.679		
Malaria	-0.040	0.030	0.105		
Latitude	-0.017	0.010	0.035		
	Average total impact				
Human capital $m{h}$	0.007	0.041	0.076		
Technology gap $oldsymbol{a}$	0.018	0.037	0.056		
Lnoilgas	-5.953	8.507	21.021		
Lnpopden	-0.010	0.025	0.060		
Capcity	-0.389	0.080	0.558		
Invcoast	-0.009	1.496	3.056		
Malaria	-0.012	0.010	0.029		
Latitude	0.003	0.007	0.011		

Table: Average impact estimates including further controls, without country FE (Spec. (V))

Variables	Lower 0.01	Mean	Upper 0.99		
	Average direct impact				
Human capital $m{h}$	0.047	0.178	0.302		
Technology gap $oldsymbol{a}$	0.138	0.194	0.248		
Lnoilgas	-15.253	-2.232	11.103		
Lnpopden	-0.100	0.003	0.084		
Capcity	-0.176	0.250	0.709		
Invcoast	-1.938	0.233	2.288		
Malaria	-0.040	0.026	0.089		
Latitude	-0.021	0.000	0.021		
	Avera	age indirect i	mpact		
Human capital $m{h}$	-0.200	-0.089	0.024		
Technology gap $m{a}$	-0.187	-0.130	-0.070		
Lnoilgas	-10.634	8.582	27.038		
Lnpopden	-0.075	0.024	0.147		
Capcity	-1.024	-0.426	0.104		
Invcoast	-2.020	0.674	3.120		
Malaria	-0.066	0.000	0.074		
Latitude	-0.020	0.002	0.025		
	Ave	rage total im	ipact		
Human capital $m{h}$	0.017	0.089	0.170		
Technology gap $oldsymbol{a}$	0.022	0.064	0.101		
Lnoilgas	-7.211	6.350	18.077		
Lnpopden	-0.023	0.027	0.076		
Capcity	-0.753	-0.177	0.361		
Invcoast	-0.879	0.906	2.523		
Malaria	0.003	0.026	0.051		
Latitude	-0.010	0.002	0.012		

Table: Average impact estimates including further controls, with country FE (Spec. (VI))

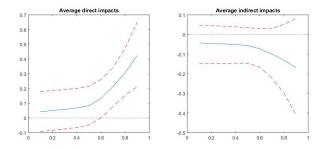
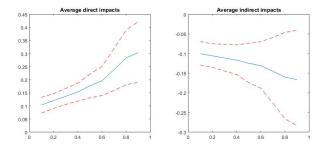



Figure: Average impacts of tfp gap at different quantiles of human capital (Spec. (VI))

ROBUSTNESS CHECKS

- Exclude observations where TFP growth is is either below the 5th percentile or above the 95th percentile
- \blacktriangleright Variations in ${oldsymbol W}$ Matrix \rightarrow choose ${oldsymbol W}$ where RSS is minimized
- ▶ Average human capital instead of initial human capital

Concluding remarks

- Investigate the nature of technology diffusion and the impact of human capital on TFP growth for an extensive amount of regions
- ► Findings
 - Fechnological catch-up and human capital are important drivers of technological progress in regions
 - Human capital effects are higher for less developed regions than for more developed regions

 \Rightarrow Regions with a higher human capital stock show a higher speed of technological catch-up

- ▷ A negative indirect impact of the technology gap is observed
 ⇒ Interpreted as positive spatial spillovers of technology *levels*
- In contrast, spatial autocorrelation of technology growth is not robust to adding further controls when including country fixed effects

Thank you for your attention.

References

Balli, H. & Sorensen, B. (2013). Interaction effects in econometrics. Empirical Economics, 45(1), 583-603.

Barro, R. & Lee, J.-W. (2013). A new data set of educational attainment in the world, 1950-2010. Journal of Development Economics, 104(C), 184-198.

- Benhabib, J. & Spiegel, M. (1994). The role of human capital in economic development. Evidence from aggregate cross-country data. Journal of Monetary Economics, 34(2), 143–173.
- Benhabib, J. & Spiegel, M. (2005). Human capital and technology diffusion. In P. Aghion & S. Durlauf (Eds.), Handbook of Economic Growth (1 ed.)., volume 1, Part A chapter 13, (pp. 935–966). Elsevier.
- Ertur, C. & Koch, W. (2007). Growth, technological interdependence and spatial externalities: theory and evidence. Journal of Applied Econometrics, 22(6), 1033–1062.

Fischer, M. (2011). A spatial Mankiw Romer Weil model: theory and evidence. The Annals of Regional Science, 47(2), 419-436.

Gennaioli, N., La Porta, R., López-de Silanes, F., & Shleifer, A. (2014). Growth in regions. Journal of Economic Growth, 19(3), 259-309.

LeSage, J. P. & Pace, R. K. (2009). Introduction to Spatial Econometrics. Statistics: A Series of Textbooks and Monographs. CRC Press.

Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to the empirics of economic growth. The Quarterly Journal of Economics, 107(2), 407–437.

Piribauer, P. & Wanzenböck, I. (2016). R&D networks and regional knowledge production in Europe: Evidence from a space-time model. Papers in Regional Science.

Solow, R. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65-94.

Country	Numer of regions		
Argentina	24		
Australia	8		
Austria	9		
Bangladesh	7		
Bolivia	9		
Brazil	20		
Canada	11		
Switzerland	23		
China	27		
Colombia	24		
Germany	9		
Denmark	1		
Spain	17		
France	20		
Greece	7		
Indonesia	26		
India	27		
Ireland	1		
Italy	19		
Japan	46		
Mexico	32		
Malaysia	10		
Norway	19		
Pakistan	4		
Peru	23		
Portugal	5		
Thailand	66		
United Republic of Tanzania	20		
United States of America	51		
South Africa	4		

Descriptive Statistics

Table: Descriptive statistics

Variable	Min.	Mean	Median	Max.	St.dev.
Ln(TFP) (1980)	3.32	5.52	5.84	7.31	0.83
Average annual growth of TFP (1980-2005)	-4.61	0.91	0.96	5.89	1.36
Average years of schooling (1980)	0.50	5.71	4.94	13.07	3.49

26 / 30