František Turnovec

A Leontief-type
Model of
Ownership
Structures
Methodology and
Implications
František Turnovec is professor of economics at Charles University, Prague, Centre for Economic Research and Graduate Education (CERGE). This research was finalized during the author's stay at WIIW with support by a research fellowship of the Federal Chancellery of Austria. The research project was co-sponsored by the Grant Agency of the Academy of Sciences of the Czech Republic, grant No. A8085901.

František Turnovec

A Leontief-type Model of Ownership Structures
Methodology and Implications
Contents

Abstract ... i

1 Introduction ... 1

2 Model of ownership structures ... 2

3 Transparency ... 7

4 One interesting identity ... 9

5 The privatization illusion ... 10

6 An application: the Czech banking sector ... 13

7 Some implications .. 21

References ... 23
Abstract

A simple algebraic model of a property structure leading to Leontief's input-output scheme is developed and used to eliminate indirect ownership relations and evaluate the final distribution of national property among individual owners. A concept of transparency of an ownership structure is defined. Implications of non-transparency for general equilibrium theory, profit distribution and decision making are discussed.

Keywords: ownership structure, primary owners, privatization illusion, secondary owners, transparency

JEL classification: C60, L33, K11
František Turnovec

A Leontief-Type Model of Ownership Structures
Methodology and Implications

1 Introduction

One of the basic paradigms of neo-classical economics reflected in general equilibrium theory and welfare economics is the assumption about the economic organization of the society based on private ownership of production factors and services and their use to maximize 'selfish' benefits of owners. Individuals as consumers are maximizing utility subject to budget constraint having on the right-hand side incomes from selling production factors and services owned by them and the revenues from profits of firms they are co-owning; firms are maximizing profits and the invisible hand of competition leads to Pareto optimal equilibrium states (Arrow, 1951, Debreu, 1959, Feldman, 1989).

Facing reality one can observe a quite different picture: a universe of corporations and non-transparent networks of ownership relations. Citizens are owners of a fraction of shares; ownership is dominated by big anonymous companies, banks and funds, who are co-owning a significant part of national property on an institutional basis. Citizen A has a share in corporation B, corporation B has a share in corporation C, corporation C has a share in corporation D, and corporation D has a share in corporation B. Is there some relation between citizen A and corporation D?

The legitimate question is: Can an anonymous institution as an institution own anything? Because of transaction costs modern economy cannot be governed by individual owners directly, so the system of agents has been developed, consisting of intermediary institutions and their professional management, mostly distinct from owners. But in principle intermediary institutions are only authorized to execute some of the property rights as agents and on behalf and for the benefit of individual owners. The final owners of national property can only be individuals or their non-profit associations.¹

Accepting this point of view, one can ask a rather technical question: In a non-transparent network of ownership relations, is there a possibility to disclose a final assignment of the whole national property to individual owners only? In the present paper we try to answer this question.

¹ "Property rights are of course human rights, i.e., rights which are possessed by human beings. The introduction of the wholly false distinction between property rights and human rights in many policy discussions is surely one of the all time great semantic flimflams" (Jensen and Meckling, 1976).
A simple algebraic model of ownership structures is formulated reflecting direct and indirect ownership relations. An iterative process of eliminating indirect relations is proposed. It is shown that this process converges to the ownership structure in which all intermediary indirect relations are eliminated and the property is fully attributed to individual owners. The concept of transparency of a given observable ownership structure is introduced: an ownership structure is called transparent if the iterative process leads to elimination of indirect relations in a finite number of iterations, otherwise the structure is considered not to be transparent. And finally, it is shown that using a Leontief-type model it is possible to evaluate the final distribution of property exactly (not as an approximation) even in the case of non-transparent ownership structures.

The idea of transparency based on convergence properties of an iterative process of indirect relations elimination, was proposed in Turnovec (1999). The new contribution presented in this paper is an extension of the Leontief input-output methodology on structural analysis of ownership relations.

2 **Model of ownership structures**

Let us consider two types of economic agents: the primary owners, who can own, but cannot be owned (citizens, citizens' non-profit associations, state, municipalities etc.), and the secondary owners, who can be owned and at the same time can own (companies, corporations).

Let

\[m \] be the number of primary owners, \(i = 1, 2, \ldots, m \),
\[n \] be the number of secondary owners (companies), \(j = 1, 2, \ldots, n \),
\[s_{ji}^0 \] be the direct share of the primary owner \(i \) in the secondary owner \(j \) (as a proportion of the total number of shares),
\[t_{jk}^0 \] be the direct share of the secondary owner (company) \(k \) in the secondary owner (company) \(j \).

Then the \(n \times m \) matrix

\[S_0 = (s_{ji}^0) \]

where the row \(j \) expresses the shares of the primary owners \(i = 1, 2, \ldots, m \) in the secondary owner \(j \), and the column \(i \) expresses the shares of the primary owner \(i \) in the secondary

\[^2 \text{Speaking about direct relation we have in mind relation between individual A and company B providing that individual A owns a share in company B, while indirect relation means that individual A, having a share in company B and not having a share in company C, has through company B a relation to company C that is co-owned by company B.} \]
owners \(j = 1, 2, ..., n \), will be called a matrix of primary property distribution, and the \(n \times n \) matrix

\[
T_0 = (t^0_{jk})
\]

where the row \(j \) expresses the shares of the secondary owners \(k = 1, 2, ..., n \) in the secondary owner \(j \), and the column \(k \) expresses the shares of the secondary owner \(k \) in the secondary owners \(j = 1, 2, ..., n \), will be called a matrix of secondary property distribution. The couple

\[
(S_0, T_0)
\]

characterizes the initial property distribution in an economy.

Clearly

\[
\sum_{i=1}^{m} s^0_{ij} + \sum_{k=1}^{n} t^0_{jk} = 1
\]

for any \(j = 1, 2, ..., n \).

Example 1

Let us consider a hypothetical initial ownership structure with the three primary owners \(P_1, P_2, P_3 \), and the three companies \(C_1, C_2, C_3 \) (secondary owners), described in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Matrix (S_0)</th>
<th></th>
<th>Matrix (T_0)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>(P_1) / 0.4</td>
<td>(P_2) / 0.2</td>
<td>(P_3) / 0.1</td>
<td>(C_1) / 0</td>
</tr>
<tr>
<td>(C_2)</td>
<td>(P_1) / 0.55</td>
<td>(P_2) / 0.25</td>
<td>(P_3) / 0</td>
<td>(C_1) / 0.2</td>
</tr>
<tr>
<td>(C_3)</td>
<td>(P_1) / 0.3</td>
<td>(P_2) / 0.3</td>
<td>(P_3) / 0.2</td>
<td>(C_1) / 0.1</td>
</tr>
</tbody>
</table>

In this case

\[
S_0 = \begin{pmatrix} 0.4 & 0.2 & 0.1 \\ 0.55 & 0.25 & 0 \\ 0.3 & 0.3 & 0.2 \end{pmatrix}
\]

and
Matrices S_0 and T_0 provide an observable property distribution.

If $T_0 = 0_{nn}$, where 0_{nn} is the nxn zero matrix, we have a very simple and transparent structure, when only primary owners own companies and there exists no indirect ownership.

However, in real economies we do not have such transparent structures, and that can lead to situations when it is not so easy to see who owns what. If a primary owner A has a share in a secondary owner B, the secondary owner B has a share in a secondary owner C, and the secondary owner C has a share in a secondary owner D, then there exist direct ownership relations between A and B and B and C, and indirect ownership relations between A and C, A and D and B and D. If moreover D has a share in B, then the situation is completely unclear. The problem is how to evaluate direct and indirect ownership relations, and to identify the part of company C which is owned by primary owner A etc.

Assuming $T_0 \neq 0_{nn}$ let us consider a primary owner i. Clearly, his total share in the company (secondary owner) j is given not only by his direct share s_{0ji} in j, but also by the indirect share following from his shares in other secondary owners that are co-owning secondary owner j. This can be expressed as

$$s_j^i = s^0_{ji} + \sum_{r=1}^n t^0_{jr} s^0_{ri}$$

Consider a secondary owner k. His effective share in the company j is given by the appropriate fractions of the shares that follow from his shares in other companies that co-own company j:

$$t_j^k = \sum_{r=1}^n t^0_{jr} t^0_{rk}$$

In matrix form we have

$$S_i = S_0 + T_0 S_0$$

$$T_1 = T_0 T_0 = T_0^2$$

So, considering indirect relations, we can obtain a decomposition of property on a direct component (following from registered shares of primary owners) and an indirect

$$T_0 = \begin{pmatrix} 0 & 0.3 & 0 \\ 0.2 & 0 & 0 \\ 0.1 & 0.1 & 0 \end{pmatrix}.$$
component (following from indirect relations). We shall call the initial distribution \((S_0, T_0)\) a distribution of zero degree, and the distribution \((S_1, T_1)\) a distribution of the first degree.

Example 2

In the ownership structure of Table 1 the matrix of secondary owners’ shares is non-zero, so there exist indirect ownership relations. Taking into account indirect relations, we obtain a more precise distribution:

\[
S_1 = \begin{pmatrix}
0.4 & 0.2 & 0.1 \\
0.55 & 0.25 & 0 \\
0.3 & 0.3 & 0.2
\end{pmatrix} + \begin{pmatrix}
0 & 0.3 & 0 \\
0.2 & 0 & 0 \\
0.1 & 0.1 & 0
\end{pmatrix} = \begin{pmatrix}
0.4 & 0.3 & 0.1 \\
0.55 & 0.25 & 0 \\
0.3 & 0.3 & 0.2
\end{pmatrix}
\]

\[
T_1 = \begin{pmatrix}
0.4 & 0.2 & 0.1 \\
0.55 & 0.25 & 0 \\
0.3 & 0.3 & 0.2
\end{pmatrix} + \begin{pmatrix}
0.165 & 0.075 & 0 \\
0.08 & 0.04 & 0.02 \\
0.095 & 0.045 & 0.01
\end{pmatrix} = \begin{pmatrix}
0.565 & 0.275 & 0.1 \\
0.63 & 0.29 & 0.02 \\
0.395 & 0.345 & 0.21
\end{pmatrix}
\]

and

\[
T_1 = \begin{pmatrix}
0 & 0.3 & 0 \\
0.2 & 0 & 0 \\
0.1 & 0.1 & 0
\end{pmatrix} + \begin{pmatrix}
0 & 0.3 & 0 \\
0.2 & 0 & 0 \\
0.1 & 0.1 & 0
\end{pmatrix} = \begin{pmatrix}
0.06 & 0.06 & 0 \\
0.02 & 0.03 & 0
\end{pmatrix}
\]

The recalculated distribution is set out in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Matrix (S_1)</th>
<th></th>
<th>Matrix (T_1)</th>
<th></th>
<th></th>
<th></th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>0.565</td>
<td>0.275</td>
<td>0.1</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(C_2)</td>
<td>0.63</td>
<td>0.29</td>
<td>0.02</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(C_3)</td>
<td>0.395</td>
<td>0.345</td>
<td>0.21</td>
<td>0.02</td>
<td>0.03</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Now we have a new distribution \((S_1, T_1)\) taking into account indirect relations. Matrix \(T_1\) is non-zero, so we have not disclosed the final distribution of property among the primary owners.
We can repeat all our considerations to produce a distribution of the second degree as

\[S_2 = S_1 + T_1 S_1 = (S_0 + T_0 S_0) + T_0^2 (S_0 + T_0 S_0) = \]

\[= (I + T_0 + T_0^2 + T_0^3) S_0 \]

\[T_2 = T_1 T_1 = T_0^4 \]

e tc.

In the general case

\[S_r = S_{r-1} + T_{r-1} S_{r-1} \]

\[T_r = T_{r-1} T_{r-1} \]

\((r = 1, 2, ..., k, ...)\), or

\[S_r = \left(I + \sum_{j=1}^{r-1} T_0^j \right) S_0 \]

\[T_r = T_0^r \]

To eliminate indirect relations there should exist a positive integer \(r \) such that

\[T_r = T_0^r = 0_{nn} \]

Example 3

In Table 3 we have the next iteration of our eliminating process. We can still observe some residual indirect property relations.

<table>
<thead>
<tr>
<th></th>
<th>Matrix S₂</th>
<th></th>
<th>Matrix T₂</th>
<th></th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(P_3)</td>
<td>(C_1)</td>
<td>(C_2)</td>
</tr>
<tr>
<td>(C_1)</td>
<td>0.5989</td>
<td>0.2915</td>
<td>0.106</td>
<td>0.0036</td>
<td>0</td>
</tr>
<tr>
<td>(C_2)</td>
<td>0.6678</td>
<td>0.3074</td>
<td>0.0212</td>
<td>0</td>
<td>0.0036</td>
</tr>
<tr>
<td>(C_3)</td>
<td>0.4252</td>
<td>0.3592</td>
<td>0.2126</td>
<td>0.00122</td>
<td>0.0018</td>
</tr>
</tbody>
</table>
In fact we state that in this particular case we shall never be able to find the final assignment of property to the primary owners.

Let us consider now the simple structure in Table 4.

Table 4

<table>
<thead>
<tr>
<th></th>
<th>Matrix S_0</th>
<th></th>
<th>Matrix T_0</th>
<th></th>
<th></th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_1</td>
<td>P_2</td>
<td>P_3</td>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
</tr>
<tr>
<td>C_1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>C_2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>C_3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In Table 5 we have the result of the second iteration. In this particular case we succeeded in eliminating indirect relations and identifying the final distribution of property among the primary owners.

Table 5

<table>
<thead>
<tr>
<th></th>
<th>Matrix S_2</th>
<th></th>
<th>Matrix T_2</th>
<th></th>
<th></th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_1</td>
<td>P_2</td>
<td>P_3</td>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
</tr>
<tr>
<td>C_1</td>
<td>0.649</td>
<td>0.219</td>
<td>0.132</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C_2</td>
<td>0.490</td>
<td>0.190</td>
<td>0.320</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C_3</td>
<td>0.300</td>
<td>0.300</td>
<td>0.400</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3 Transparency

Intuitively, the concept of transparency of a property structure should be related to the possibility to eliminate indirect relations and to find the final assignment of the total property to primary owners only.

Within the framework of the model described above, the sequence of matrices T_0, T_1, T_2, \ldots can be used for quantification of the concept of transparency of property distribution.

If we accept as an axiom that finally any distribution of property is distribution among the primary owners only, then transparency of a particular initial distribution can be measured by the distance of the primary distribution from the final distribution taking into account all degrees of indirect links.

The maximum of transparency is achieved when $T_0 = 0$. In this case primary distribution is transparent in the sense that any property is related to primary owners only and no indirect relations appear.
We shall say that a particular property structure \((S_0, T_0)\) such that \(T_0 \neq 0_{nn}\) is k-transparent, if in property distribution \((S_k, T_k)\) of degree k it holds that \(T_k = 0_{nn}\), while in property distribution of degree k-1 \((S_{k-1}, T_{k-1})\) it holds that \(T_{k-1} \neq 0_{nn}\).

A property structure is non-transparent, if for any positive integer k it holds that \(T_k \neq 0_{nn}\).

Lemma 1

Let \(A\) be a square \(n \times n\) matrix such that the sequence

\[
A^1, A^2, \ldots, A^k, \ldots
\]

of powers of the matrix \(A\) converges to a zero matrix, i.e.

\[
\lim_{k \to \infty} A^k = 0_{nn}
\]

Then

1. either there exists a positive integer \(s \leq n\) such that

\[
A^{s-1} \neq 0_{nn} \text{ and } A^s = 0_{nn}
\]

or

\[
A^k \neq 0_{nn}
\]

for any positive integer \(k\).

2. Matrix \(I - A\) is non-singular (\(I\) being an \(n \times n\) identity matrix) and

\[
(I - A)^{-1} = \sum_{k=0}^{\infty} A^k
\]

PROOF of the first part is based on the properties of so-called nilpotent matrices (e.g. Archibald, 1968), of the second part on Leontief (1966).

The matrix \(T_0\) of order \(n\) is assumed to be such that

\[
\sum_{k=1}^{n} \gamma_{jk}^0 < 1
\]

Then clearly the sequence of its powers converges to a zero matrix and the conditions of the theorem are satisfied. From Lemma 1 it follows that either there exists \(k\) such that 2 \(k \leq n\), \(T_k \neq 0_{nn}\) and \(T_{k+1} = 0_{nn}\), or \(T_r \neq 0_{nn}\) for any integer \(r\).
Example 4

Let us consider matrix T_0 from the first property structure:

$$
T_0 = \begin{pmatrix}
0 & 0.3 & 0 \\
0.2 & 0 & 0 \\
0.1 & 0.1 & 0
\end{pmatrix}
$$

Then

$$
T_1 = \begin{pmatrix}
0.2 & 0 & 0 \\
0.1 & 0.1 & 0
\end{pmatrix}
$$

and

$$
T_2 = T_0^2 = \begin{pmatrix}
0.0036 & 0 & 0 \\
0 & 0.0036 & 0 \\
0.0012 & 0.0018 & 0
\end{pmatrix}
$$

In our case $n = 3$, for $k = 1$ we have $2^1 = 2 < 3$, $T_1 \neq 0_{n \times n}$, and for $k + 1$ we have $T_2 \neq 0_{n \times n}$, where $2^2 = 4 > 3$, hence the alternative b) of the theorem statement appears. The property structure is not transparent.

4 One interesting identity

Let us assume that there exists a final distribution of property among primary owners without any indirect links. Let x_{ji} be the full (direct and indirect) share of primary owner i in corporation j. Let us call the $n \times m$ matrix $X = (x_{ji})$ a matrix of final distribution. In case of a transparent ownership structure we know that

$$
X = S_t = \left(I + \sum_{j=1}^{2^1 - 1} T_0^j \right) S_0
$$

where $2^1 - 1 \leq n$, n is the number of secondary owners.

Question: Is it possible to evaluate exactly the matrix X also in the case when the initial ownership structure is not transparent?

Lemma 2

Let (S_0, T_0) be the initial ownership structure such that
\[s^{0}_{ji} \geq 0, \quad t^{0}_{jk} \geq 0 \]

and

\[\sum_{i=1}^{m} s^{0}_{ji} + \sum_{k=1}^{n} t^{0}_{jk} = 1 \]

and let there exist a non-negative integer r such that

\[\sum_{k=1}^{n} t^{0}_{jk} < 1 \]

for all \(j = 1, 2, ..., n \). Then the sequence \(S_r \) converges and

\[\lim_{r \to \infty} S_r = (\sum_{i=0}^{\infty} T_r) S_0 = (1 - T_0)^3 S_0 = X \]

We have obtained an identity that is well known from Leontief’s input–output models.

5 The privatization illusion

Using the structural approach described above, we can try to answer the question: How much privatized is an ‘almost fully’ privatized economy?

Let \(w_j \) be the weight of a company \(j \) (e.g., the market value, value of assets etc.). Considering a distribution \((S_r, T_r) \) of degree \(r \), we can evaluate the corresponding distribution of the total property in an economy as

\[p^r_i = \frac{\sum_{j=1}^{n} s^r_{ij} w_j}{\sum_{j=1}^{n} w_j}, \quad d^r_k = \frac{\sum_{j=1}^{n} t^r_{kj} w_j}{\sum_{j=1}^{n} w_j} \]

where \(p^r_i \) is the share of the \(i \)-th primary owner and \(d^r_k \) is the share of the \(k \)-th company (secondary owner) in the total property according to distribution of degree \(r \). Let us illustrate by a simple example that the primary distribution of national property can significantly differ from the final distribution reflecting indirect links.

Example 5

Let us assume that an economy consists of the following five actors: the state \(S \), group of individual investors \(M \), two banks \(B1 \) and \(B2 \), investment fund \(F \) and a group of industrial
enterprises I. In Table 6 we provide a hypothetical primary property distribution in such an economy.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>B1</th>
<th>B2</th>
<th>F</th>
<th>I</th>
<th>total</th>
<th>weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.6</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>B2</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>total share</td>
<td>0.095</td>
<td>0.19</td>
<td>0.005</td>
<td>0.35</td>
<td>0.36</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

We can see that, with respect to the initial property distribution, the total share of the state in the national property is 9.5%.

Table 7 indicates the property distribution of degree 1, taking into account indirect relations.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>B1</th>
<th>B2</th>
<th>F</th>
<th>I</th>
<th>total</th>
<th>weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.6</td>
<td>0.3</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>B2</td>
<td>0.76</td>
<td>0.23</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>total share</td>
<td>0.343</td>
<td>0.2615</td>
<td>0.035</td>
<td>0.36</td>
<td>0.0005</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

In this case, considering indirect links in cross-ownership, the share of the state has increased to 34.3%.

Table 8 presents the property distribution of degree 2, taking into account other indirect relations.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>B1</th>
<th>B2</th>
<th>F</th>
<th>I</th>
<th>total</th>
<th>weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.676</td>
<td>0.323</td>
<td>0</td>
<td>0</td>
<td>0.001</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>B2</td>
<td>0.767</td>
<td>0.232</td>
<td>0.001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>0.76</td>
<td>0.23</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>I</td>
<td>0.532</td>
<td>0.461</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0.007</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>total share</td>
<td>0.63795</td>
<td>0.3549</td>
<td>0.0005</td>
<td>0.0035</td>
<td>0.0036</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>
Comparing Table 6 and Table 8 we observe a significant increase in the share of the state in the national property: from 9.5% to 63.795%. And we still do not have the final distribution, assigning the shares to the primary owners only.

Let us use Lemma 2. In our particular case

\[
(I - T_0) = \begin{pmatrix}
1 & 0 & -0.1 & 0 \\
-0.1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -0.7 & 1
\end{pmatrix}
\]

and

\[
(I - T_0)^{-1} = \begin{pmatrix}
1.010101 & 0.10101 & 0.10101 & 0 \\
0.10101 & 1.010101 & 0.010101 & 0 \\
0.10101 & 1.010101 & 1.010101 & 0 \\
0.070707 & 0.707071 & 0.707071 & 1
\end{pmatrix}
\]

Then

\[
X = (I - T_0)^{-1}S_0 =
\begin{pmatrix}
1.010101 & 0.10101 & 0.10101 & 0 \\
0.10101 & 1.010101 & 0.010101 & 0 \\
0.10101 & 1.010101 & 1.010101 & 0 \\
0.070707 & 0.707071 & 0.707071 & 1
\end{pmatrix}
\begin{pmatrix}
0.6 \\
0.7 \\
0 \\
0
\end{pmatrix}

= \begin{pmatrix}
0.676768 \\
0.767677 \\
0.767677 \\
0.537374
\end{pmatrix}
\begin{pmatrix}
0.323232 \\
0.232323 \\
0.232323 \\
0.462626
\end{pmatrix}
\]

and the final distribution of shares, after elimination of indirect links, will look as follows:
Table 9

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>B1</th>
<th>B2</th>
<th>F</th>
<th>I</th>
<th>total</th>
<th>weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.676768</td>
<td>0.323232</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>B2</td>
<td>0.767677</td>
<td>0.232323</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>0.767677</td>
<td>0.232323</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>I</td>
<td>0.537374</td>
<td>0.4626265</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>total share</td>
<td>0.6434343</td>
<td>0.3565657</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

6 An application: the Czech banking sector

In this part we demonstrate the possibility of practical implementation of our model on an analysis of the property structure of the core banking sector in the Czech Republic at the end of 1997. There were five major banks, representing almost 90% of the total assets of the Czech banking sector (Matoušek, 1998):
- CS Česká spořitelna (Czech Saving Bank),
- CP Česká pojišťovna (Czech Insurance),
- KB Komerční banka (Commercial Bank),
- IPB Investiční a poštovní banka (Investment and Post bank),
- CSOB Československá obchodní banka (Czecho-Slovak Trade Bank).

As primary owners we have:
- FNM Fond národního majetku (Fund of National Property), state agency,
- CNB Česká národní banka (Czech National Bank), central bank,
- MF Ministerstvo financí (Ministry of Finance), state agency,
 Mun. Sdružení měst (Association of Municipalities),
- BH Bank Holding, non-state,
- JRING J. Ring stock comp., non-state,
- PPF I First Privatization Holding, non-state,
- BNY The Bank of New York,
- Nomura Nomura Group,
- MB The Midland Bank,
- BTI The Bankers Trust Investment,
- SR Slovak Republic,
- others minority investors (mostly from voucher privatization).
The secondary owners are:

- SPIF-C Spořitelní privatizační investiční fond – Český (investment fund),
- SPIF-V Spořitelní privatizační investiční fond – výnosový (investment fund),
- PPF První privatizační fond (investment fund),
- PIF První investiční fond (investment fund),
- RIF Restituční investiční fond (investment fund),
- IPF-K Investiční privatizační fond banky (investment fund),
- VS Vojenské stavby (stock company).

The structure is incomplete, because some of our primary owners are in fact secondary owners as well (owned mostly by foreign capital), but to have a closed system for illustrative purposes, we shall not go any deeper.

Table 10 gives the initial ownership distribution (end of 1997). In Table 15 we obtained the final ownership distribution after elimination of indirect relations. We provide also intermediate calculations. We can see, for example, that the difference between final and initial distribution can mean the difference between majority control and minority (Komerční banka). While the matrix S_0 of initial distribution is pretty sparse, the matrix X of final distribution introduces new additional fractions of property to all primary owners.
Table 10

Initial property distribution in the banking sector of the Czech Republic, end of 1997, in relative shares

<table>
<thead>
<tr>
<th></th>
<th>FNM</th>
<th>CNB</th>
<th>MF</th>
<th>Mun.</th>
<th>BH</th>
<th>JRING</th>
<th>PPF</th>
<th>BNY</th>
<th>Nomura</th>
<th>MB</th>
<th>BTI</th>
<th>SR</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>0.528</td>
<td></td>
<td>0.1195</td>
</tr>
<tr>
<td>CP</td>
<td>0.3025</td>
<td></td>
<td>0.1771</td>
</tr>
<tr>
<td>KB</td>
<td>0.4874</td>
<td></td>
<td>0.2983</td>
</tr>
<tr>
<td>IPB</td>
<td>0.3149</td>
<td></td>
<td></td>
<td>0.1497</td>
<td></td>
<td></td>
<td>0.502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4066</td>
</tr>
<tr>
<td>CSOB</td>
<td>0.1959</td>
<td>0.2651</td>
<td>0.1959</td>
<td></td>
<td></td>
<td></td>
<td>0.2578</td>
<td></td>
<td>0.0853</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIF-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.4495</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIF-V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td>0.3501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.862</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPF-KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7099</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.411</td>
<td>0.427</td>
<td>0.162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CS</th>
<th>CP</th>
<th>KB</th>
<th>IPB</th>
<th>CSOB</th>
<th>SPIF-C</th>
<th>SPIF-V</th>
<th>PPF</th>
<th>PIF</th>
<th>RIF</th>
<th>IPF-KB</th>
<th>VS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>0.101</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td></td>
<td>0.1718</td>
<td>0.14</td>
<td></td>
<td>0.051</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td>0.0153</td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.051</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPB</td>
<td></td>
</tr>
<tr>
<td>CSOB</td>
<td></td>
</tr>
<tr>
<td>SPIF-C</td>
<td></td>
</tr>
<tr>
<td>SPIF-V</td>
<td></td>
</tr>
<tr>
<td>PPF</td>
<td></td>
</tr>
<tr>
<td>PIF</td>
<td></td>
</tr>
<tr>
<td>RIF</td>
<td></td>
</tr>
<tr>
<td>IPF-KB</td>
<td></td>
</tr>
<tr>
<td>VS</td>
<td></td>
</tr>
</tbody>
</table>

15
Table 11

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.101</th>
<th>0.028</th>
<th>0</th>
<th>0</th>
<th>0.051</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.171</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2086</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.0153</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0121</td>
<td>0.0356</td>
<td>0.0221</td>
</tr>
<tr>
<td>0</td>
<td>0.0786</td>
</tr>
<tr>
<td>0.2505</td>
<td>0</td>
</tr>
<tr>
<td>0.2499</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.138</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.101</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2901</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Table 12

Matrix ($I - T_0$)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-0.101</th>
<th>-0.028</th>
<th>0</th>
<th>0</th>
<th>-0.061</th>
<th>-0.025</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-0.1718</td>
<td>-0.14</td>
<td>0</td>
<td>0</td>
<td>-0.2086</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.0153</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.0121</td>
<td>-0.0356</td>
<td>-0.0221</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.0786</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.2505</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.2499</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-0.138</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-0.101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-0.2901</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 13

Matrix \((I - T_0)^{-1}\)

<table>
<thead>
<tr>
<th></th>
<th>1.01984</th>
<th>0.103155</th>
<th>0.02874</th>
<th>0.017722</th>
<th>0.014442</th>
<th>0.025496</th>
<th>0.021518</th>
<th>0.000348</th>
<th>0.001023</th>
<th>0.000635</th>
<th>0.001393</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1718</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0.2086</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.013503</td>
</tr>
<tr>
<td>0.015704</td>
<td>0.006888</td>
<td>1.006895</td>
<td>0.001183</td>
<td>0.000964</td>
<td>0.000801</td>
<td>0.000393</td>
<td>0.001437</td>
<td>0.012183</td>
<td>0.035845</td>
<td>0.022252</td>
<td>0.000093</td>
</tr>
<tr>
<td>0.25547</td>
<td>0.02584</td>
<td>0.007199</td>
<td>0.004439</td>
<td>0.003618</td>
<td>1.013029</td>
<td>0.006387</td>
<td>0.00539</td>
<td>0.000087</td>
<td>0.000256</td>
<td>0.000159</td>
<td>0.000349</td>
</tr>
<tr>
<td>0.254858</td>
<td>0.02577</td>
<td>0.007182</td>
<td>0.004429</td>
<td>0.003609</td>
<td>0.012998</td>
<td>1.006371</td>
<td>0.005377</td>
<td>0.000087</td>
<td>0.000256</td>
<td>0.000159</td>
<td>0.000348</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25547</td>
<td>0.02584</td>
<td>0.007199</td>
<td>0.004439</td>
<td>0.003618</td>
<td>1.013029</td>
<td>0.006387</td>
<td>0.00539</td>
<td>0.000087</td>
</tr>
<tr>
<td>0.004556</td>
<td>0.001998</td>
<td>0.2921</td>
<td>0.000343</td>
<td>0.000232</td>
<td>0.000114</td>
<td>0.000417</td>
<td>0.003534</td>
<td>0.010399</td>
<td>1.006455</td>
<td>0.000027</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 14

Matrix S₀

<table>
<thead>
<tr>
<th></th>
<th>FNM</th>
<th>CNB</th>
<th>MF</th>
<th>Mun.</th>
<th>BH</th>
<th>JRING</th>
<th>PPF I</th>
<th>BNY</th>
<th>Nomura</th>
<th>MB</th>
<th>BTI</th>
<th>SR</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>0.528</td>
<td>0</td>
<td>0</td>
<td>0.148</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>CP</td>
<td>0.303</td>
<td>0</td>
<td>0.177</td>
</tr>
<tr>
<td>KB</td>
<td>0.487</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.129</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.298</td>
</tr>
<tr>
<td>IPB</td>
<td>0.315</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.407</td>
</tr>
<tr>
<td>CSOB</td>
<td>0.196</td>
<td>0.265</td>
<td>0.196</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.258</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td>SPIF-C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>SPIF-V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>PPF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIF</td>
<td>0</td>
<td>0.862</td>
</tr>
<tr>
<td>RIF</td>
<td>0.204</td>
<td>0</td>
<td>0.695</td>
</tr>
<tr>
<td>IPF-KB</td>
<td>0</td>
<td>0.71</td>
</tr>
<tr>
<td>VS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.411</td>
<td>0.427</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.162</td>
</tr>
</tbody>
</table>
Matrix $X = (I - T_0)^{-1}S_0$

Final property distribution after elimination of indirect relations

<table>
<thead>
<tr>
<th></th>
<th>FNM</th>
<th>CNB</th>
<th>MF</th>
<th>Mun.</th>
<th>BH</th>
<th>JRING</th>
<th>PPF I</th>
<th>BNY</th>
<th>Nomura</th>
<th>MB</th>
<th>BTI</th>
<th>SR</th>
<th>others</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>0.592306</td>
<td>0.003829</td>
<td>0.002829</td>
<td>0.150426</td>
<td>0.003225</td>
<td>0.00595</td>
<td>0.021518</td>
<td>0.003713</td>
<td>0.00089</td>
<td>0.023252</td>
<td>0.00255</td>
<td>0.003723</td>
<td>0.191144</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>0.384026</td>
<td>0.037114</td>
<td>0.027426</td>
<td>0</td>
<td>0.031268</td>
<td>0.005766</td>
<td>0.2086</td>
<td>0</td>
<td>0.008624</td>
<td>0</td>
<td>0</td>
<td>0.036092</td>
<td>0.261083</td>
<td>1</td>
</tr>
<tr>
<td>KB</td>
<td>0.509999</td>
<td>0.000256</td>
<td>0.000189</td>
<td>0.002316</td>
<td>0.000215</td>
<td>0.00004</td>
<td>0.001437</td>
<td>0.130091</td>
<td>0.000059</td>
<td>0.000358</td>
<td>0.000039</td>
<td>0.000249</td>
<td>0.355752</td>
<td>1</td>
</tr>
<tr>
<td>IPB</td>
<td>0.3149</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.182005</td>
<td>0.033562</td>
<td>0</td>
<td>0</td>
<td>0.0502</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.419333</td>
<td>1</td>
</tr>
<tr>
<td>CSOB</td>
<td>0.1959</td>
<td>0.2651</td>
<td>0.1959</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2578</td>
<td>0.0853</td>
</tr>
<tr>
<td>SPIF-C</td>
<td>0.148373</td>
<td>0.000959</td>
<td>0.000709</td>
<td>0.037682</td>
<td>0.000808</td>
<td>0.000149</td>
<td>0.00539</td>
<td>0.00093</td>
<td>0.000223</td>
<td>0.305825</td>
<td>0.000639</td>
<td>0.000933</td>
<td>0.497381</td>
<td>1</td>
</tr>
<tr>
<td>SPIF-V</td>
<td>0.148017</td>
<td>0.000957</td>
<td>0.000707</td>
<td>0.037592</td>
<td>0.000806</td>
<td>0.000149</td>
<td>0.005377</td>
<td>0.000928</td>
<td>0.000222</td>
<td>0.305811</td>
<td>0.100637</td>
<td>0.00093</td>
<td>0.397867</td>
<td>1</td>
</tr>
<tr>
<td>PPF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIF</td>
<td>0.052996</td>
<td>0.005122</td>
<td>0.003785</td>
<td>0</td>
<td>0.004315</td>
<td>0.000796</td>
<td>0.028787</td>
<td>0</td>
<td>0.00119</td>
<td>0</td>
<td>0</td>
<td>0.004981</td>
<td>0.89803</td>
<td>1</td>
</tr>
<tr>
<td>RIF</td>
<td>0.242487</td>
<td>0.003749</td>
<td>0.00277</td>
<td>0</td>
<td>0.003158</td>
<td>0.000582</td>
<td>0.021069</td>
<td>0</td>
<td>0.000871</td>
<td>0</td>
<td>0</td>
<td>0.003645</td>
<td>0.721669</td>
<td>1</td>
</tr>
<tr>
<td>IPF-KB</td>
<td>0.147661</td>
<td>0.000074</td>
<td>0.000055</td>
<td>0.000672</td>
<td>0.000062</td>
<td>0.000012</td>
<td>0.000417</td>
<td>0.037379</td>
<td>0.000017</td>
<td>0.000104</td>
<td>0.000011</td>
<td>0.000072</td>
<td>0.813104</td>
<td>1</td>
</tr>
<tr>
<td>VS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.411</td>
<td>0.427</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.162</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 15
7 Some implications

There can be a significant difference between the primary ‘face’ image of the ownership structure and the ‘true’ position of the subjects of property rights. This difference has serious theoretical implications.

Just a few questions:

(a) Profits: How are, and how should they be, distributed? We established that the final allocation of property to the individual property owners, after elimination of indirect relations, is

\[X = (I - S_0)^{-1} S_0 \]

while only the listed direct initial distribution \(S_0 \) is taken into account.

(b) Decision making power: How is, and how should it be, distributed? According to \(X \) or according to \(S_0 \)\(^3\)

(c) Another issue for theoretical research is the implication of non-transparency of ownership structures for the general equilibrium and welfare theory. Indirect ownership relations clearly generate externalities in the profit maximization doctrine of general equilibrium theory: total profit of one company might depend on profits of other companies.

Many problems associated with the inadequacy of the current general equilibrium theory and welfare economics can be related to the theory of agency relationships (principal–agent problem). An agency relationship is a contract under which one or more persons (the principal(s)) engage another person (the agent) to perform some service on their behalf which involves delegating some decision making authority to the agent and providing some incentive scheme for the agent to maximize the welfare of the principal. Agency relations have been intensively investigated at firm level (see e.g. Jensen and Meckling, 1976, Varian, 1992). But here we face the overall economy level of the principal–agent problem. Indirect ownership relations, generally viewed as full ownership relations, are frequently just agency relations. We are living in an economy of agents behaving as owners. There is a hierarchical structure of agents in the economy. Primary owners are principals and secondary institutional owners are in many cases just labels for agents. But in the network of indirect ownership relations an agent A becomes a principal with respect to some other agent B, the agent B becomes a principal with respect to some other agent C, and C can become a principal with respect to A, principal of his principals. So finally it is not clear who

\(^3\) An agenda for future research is to apply the methodology developed here to the control structures that are given not by shares only, but by voting majorities, coalitions of owners etc. (see Maeland, 1991, Gambarelli, 1994).
is an agent and who is his principal. Such a situation can be considered a market imperfection and can lead to market failures.\footnote{Not understanding clearly distinction between principals and agents and absence of agency relation regulation was one of the reasons of problematic results of the Czech privatization (see Bohatá, 1998, Schwartz, 1997).}

A hierarchical principal–agent problem within the framework of general equilibrium theory and welfare economics is a challenge for economic theory.
References

WIIW PUBLICATIONS

Short version *)
(as of April 2000)

For current updates and summaries see also the WIIW Homepage on the Internet
http://www.wiiw.ac.at

COUNTRIES IN TRANSITION 1999: WIIW Handbook of Statistics
published, under its own imprint, by WIIW
Vienna 1999, 481 pp., ATS 1,200.--/EUR 87.21 (ISBN 3-85209-004-0)

Gábor Hunya (ed.): Integration Through Foreign Direct Investment
The Vienna Institute for International Economic Studies Series, Edward Elgar, Cheltenham, UK and Northampton, MA,
USA, 2000, 250 pp., £ 59.90 (ISBN 1-84064-156-8)

ANALYTICAL FORECASTS (from 1997)
Published, under its own imprint, by WIIW (price: ATS 950.--/EUR 69.04)

CURRENT ANALYSES AND COUNTRY PROFILES (from 1991)
Published, under its own imprint, by WIIW

No. 13 V. Gligorov: The Kosovo Crisis and the Balkans: Background, Consequences, Costs and Prospects. June 1999 (ATS 600.--/EUR 43.60)

STRUCTURAL REPORTS (from 1997)
Published, under its own imprint, by WIIW (price: ATS 7,500.--/EUR 545.05)

*) A complete list of publications is forwarded on request.
INDUSTRY STUDIES (from 1999)
Published, under its own imprint, by WIIW (price: ATS 950.--/EUR 69.04)
1999/3 D. Hanzl: Development and Prospects of the Wood and Wood Products Sector in the Central and Eastern European Countries. September 1999

RESEARCH REPORTS (from 1972)
Published, under its own imprint, by WIIW
No. 261 Z. Lukas: Slovakia: Challenges on the Path towards Integration. December 1999 (ATS 300.--/EUR 21.80)
No. 264 J. Pöschl et al.: Transition Countries Clamber Aboard the Business Boom in Western Europe. Upswing masks persistent transition-related problems. February 2000 (ATS 600.--/EUR 43.60)

Yearly subscription:
The current issues of the series Research Reports (including Reprints) may also be ordered by yearly subscription at a price of ATS 2,800.--/EUR 203.48 (within Austria), ATS 3,150.--/EUR 228.92 (Europe) and ATS 3,300.--/EUR 239.82 (overseas) respectively.

WORKING PAPERS (from 1993)
Published, under its own imprint, by WIIW (price: ATS 100.--/EUR 7.27)
Under the heading “Working Papers” WIIW publishes theoretical studies and research relying more heavily on the use of econometric techniques.
No. 11 R. Stehrer, M. Landesmann and J. Burgstaller: Convergence Patterns at the Industrial Level: the Dynamics of Comparative Advantage. October 1999

MONOGRAPHHS
THE VIENNA INSTITUTE MONTHLY REPORT
(exclusively for subscribers to the WIIW Service Package)

1999/7 EU eastern enlargement from the perspective of Greece
Romania: What can we learn from macroeconomic forecasting?
Selected monthly data on the economic situation in nine transition countries, 1998 and 1999
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

1999/8-9 Capital inflows and current account deficit: the case of Poland
Decline of public virtues and the fate of Eastern Europe
Price levels of consumer goods and services in the advanced transition countries, 1990-96
Quarterly GDP by expenditure in Slovenia
Fighting over the wreckage in Yugoslavia
The Stability Pact for South-East Europe

1999/10 Czech economy: A hint of recovery
Hungary: Waiting for a turnaround in the EU business cycle
Something is rotten in the state of Poland
Slovakia: Austerity package not yet successful
Russia: Signs of economic recovery amidst deteriorating politics
Selected monthly data on the economic situation in nine transition countries, 1998 and 1999
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

1999/11 Bulgaria: Widening external imbalances
Croatia: Election year overshadowed by poor economic performance
Romania: Restructuring amidst austerity
Key issues of the accession negotiations between the EU and Hungary
EU Commission evaluates the transition countries
Selected monthly data on the economic situation in nine transition countries, 1998 and 1999
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

1999/12 Ukraine: More of the same seen as better than less
Agriculture 1999: slight decline in the CEECs, stagnation at low level in Russia and Ukraine
Small and medium-size enterprises in the Polish economy of the 1990s
The financial services sector in the CIS countries
Selected monthly data on the economic situation in nine transition countries, 1998 and 1999
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

2000/1 Mid-term priorities of Slovak economic policy
The role of foreign direct investment in economic recovery and transformation
Inflationary consequences of the equalization of prices of tradable consumer goods
Selected monthly data on the economic situation in nine transition countries, 1998 and 1999
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

2000/2 The CIS at the dawn of the century: Hybrid economies benefit from devaluation
Macedonia: Mixed results and prospects
Serbia and Montenegro: Diverging or colliding?
Selected monthly data on the economic situation in nine transition countries, 1998 and 1999
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

2000/3 Fiscal reform in Romania: A move towards predictability?
The banking sector in Bosnia and Herzegovina
Kosovo: Situation and options
Selected monthly data on the economic situation in nine transition countries, 1998 to 2000
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

2000/4 Sustainability of Poland's 'import-fed' growth
Recent labour market developments in CEECs
Croatia's second transition?
Selected monthly data on the economic situation in nine transition countries, 1998 to 2000
Guide to WIIW statistical services on Central and Eastern Europe, Russia and Ukraine

WIIW CHINA REPORT
(exclusively for subscribers to the WIIW China Service)

1999/1 The Chinese economy between Asian crisis and transformational difficulties
1999/2 Public-investment driven growth running out of steam?
1999/3 Demographic factors challenging social security in contemporary China
1999/4 Revival of Chinese exports cannot make up for weak domestic demand
2000/1 Active fiscal policy and rising external demand may halt decline in growth
WIIW Service Package

The Vienna Institute offers to firms and institutions interested in unbiased and up-to-date information on Central and East European markets a package of exclusive services and preferential access to its publications and research findings, on the basis of a subscription at an annual fee of ATS 26,000.--/EUR 1,889.49.

This subscription fee entitles to the following package of Special Services:

- A free invitation to the Vienna Institute’s Spring Seminar, a whole-day event at the end of March, devoted to topical issues in the economic transformation of the Central and East European region (for subscribers to the WIIW Service Package only).
- Copies of, or online access to, The Vienna Institute Monthly Report, a periodical consisting of timely articles summarizing and interpreting the latest economic developments in Central and Eastern Europe and the former Soviet Union. The statistical annex to each Monthly Report contains tables of the latest monthly country data. This periodical is not for sale, it can only be obtained in the framework of the WIIW Service Package.
- Free copies of the Institute’s Research Reports (including Reprints), Analytical Forecasts and Current Analyses and Country Profiles
- A free copy of the WIIW Handbook of Statistics, Countries in Transition (published in October each year and containing more than 200 tables and 100 Figures on the economies of Bulgaria, Croatia, the Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, Russia and Ukraine)
- Consulting. The Vienna Institute is pleased to advise subscribers on questions concerning the East European economies or East-West economic relations if the required background research has already been undertaken by the Institute. We regret we have to charge extra for ad hoc research.
- Free access to the Institute’s specialized economics library and documentation facilities.

Subscribers who wish to purchase WIIW data sets on diskette or special publications not included in the WIIW Service Package, or to order the WIIW Industrial Subscription Service – Central and Eastern Europe, are granted considerable price reductions.

For detailed information about the WIIW Service Package please see the WIIW Homepage on the Internet: http://www.wiiw.ac.at

WIIW Industrial Subscription Service – Central and Eastern Europe

The WIIW Industrial Subscription Service comprises

- the WIIW Structural Report (published biannually)
- 4-6 Industry Studies per year (1999: mechanical engineering, paper & printing, transport equipment, wood & wood products and the food, beverages & tobacco sector)

The Structural Report covers structural developments in central and eastern Europe, analysing changes in the structure of output and employment, international competitiveness (wages, productivity and labour costs), balance-of-payments structures and the patterns of trade and foreign direct investment. The analysis follows the statistical classification of economic activities in the European Union, which allows for cross-country and cross-industry comparisons (including east-west comparisons). It comprises allmanufacturing industries at the 2-digit NACE (rev. 1) level and places them in the context of the CEECs’ general economic development.

The Industry Studies cover production, labour, foreign trade and foreign direct investment in the Czech Republic, Hungary, Poland, Slovakia, Slovenia, Bulgaria and Romania. The analysis builds on the WIIW Industrial Database, its FDI and FIE Database.

The first part of each study analyses the overall development of the industrial branch under consideration (trends in growth and structure), its international competitiveness, its trade performance with the EU (labour costs, price and quality indicators, revealed comparative advantage, etc.), FDI, and the general prospects. The second part provides company profiles of the leading domestic firms and the foreign investors in that industry.

The WIIW Industrial Subscription Service – Central and Eastern Europe provides a deeper insight in the process of economic development in the individual countries of central and eastern Europe. This new subscription service is relevant for managers who have to make strategic decisions and assess risk; it will be of great value for financial investors and industrialists interested in longer-term trade relations and direct investments in the region; and it will be invaluable for those engaged in economic research and public policy.

Subscription fee: ATS 9,000.-- per year (EUR 654.06)
Special fee for Member companies: ATS 6,000.-- per year (EUR 436.04)

WIIW China Service

This package of exclusive services, at an annual subscription fee of ATS 9,000, includes:

- Four issues of the WIIW China Report: three issues with analyses of the current economic situation and short-term forecasts in February, May and November, respectively, as well as one issue on a special topic in July/August
- Invitation to lectures and round tables on the economies of China and Southeast Asia
- Contacts with Chinese guest researchers during their stay at the Vienna Institute
- The possibility to consult with WIIW China expert Waltraut Urban and to obtain relevant data and materials
- Free access to the Institute’s documentation of literature on China
- The possibility to obtain preprints or interim results of research projects carried out at the Vienna Institute
To
The Vienna Institute
for International Economic Studies
Oppolzergasse 6
A-1010 Vienna

- Please forward more detailed information about the Vienna Institute's Service Package
- Please forward a complete list of the Vienna Institute's publications to the following address

Please enter me for
- 1 yearly subscription of *Research Reports* (including Reprints)
 at a price of ATS 2,800.--/EUR 203.48 (within Austria), ATS 3,150.--/EUR 228.92 (Europe) and
 ATS 3,300.--/EUR 239.82 (overseas) respectively
- 1 yearly subscription of *WIIW Industrial Subscription Service – Central and Eastern Europe*
 at a price of ATS 9,000.--/EUR 654.06
- 1 yearly subscription of *WIIW China Service*
 at a price of ATS 9,000.--/EUR 654.06

Please forward
- the following issue of *Research Reports*
- the following issue of *Analytical Forecasts*
- the following issue of *Current Analyses and Country Profiles*
- the following issue of *Working Papers*
- the following issue of *Industry Studies*
- the following issue of *Structural Reports*
- the following issue of *WIIW-WIFO Database on Foreign Direct Investment*
- the following issue of *COUNTRIES IN TRANSITION: WIIW Handbook of Statistics*

Name

Address

Telephone Fax e-mail

Date Signature

Herausgeber, Verleger, Eigentümer und Hersteller:
Verein "Wiener Institut für Internationale Wirtschaftsvergleiche“ (WIIW),
Wien 1, Oppolzergasse 6
Postanschrift: A-1010 Wien, Oppolzergasse 6, Tel: [431] 533 66 10, Telefax: [431] 533 66 10 50
Internet Homepage: http://www.wiiw.ac.at
Nachdruck nur auszugsweise und mit genauer Quellenangabe gestattet.
P.b.b. Verlagspostamt 1010 Wien

Leontief.doc (Working Paper 13)