

Non-Price Competitiveness of Exports from Asian Countries

Konstantīns Beņkovskis, *Latvijas Banka* Julia Wörz, *Oesterreichische Nationalbank*

CESSA-wiiw Joint International Workshop Vienna, June 7, 2013

General motivation

- Drawbacks of traditional REER indicators
- Theoretical framework to measure non-price factors (disaggregated approach)
- From import to export prices
- Dynamics in price and non-price competitiveness in ASEAN+3
- Contribution of non-price factors in selected product groups
- Conclusions

2000 = 100150 140 130 120 110 100 90 80 70 60 50 01-2000 01-2001 01-2002 01-2003 01-2004 01-2005 01-2006 01-2007 01-2008 01-2009 01-2010 01-2011 01-2012 01-2013 -China —Hong Kong SAR —Indonesia ---Korea -Japan -Malaysia ----Philippines ----Thailand - 3 -Source: BIS

Real Effective Exchange Rate Index

Why do we need a new index?

REERs are a poor approximation for competitiveness:

- Whole economy is covered, no distinction between domestic and external markets
- Profit margins are ignored
- Structural issues are not captured (different export structure across countries)
- > Important factors are omitted (e.g. taste, image of brands)

Importance of prices for competitiveness is decreased by:

- Greater variety
- > Larger set of imported products
- Higher valuation for / quality of traded products

Aim of the paper

- Evaluate the price and non-price competitiveness of important Asian countries:
 - > ASEAN members + China, Japan, South Korea
- We develop a new index that adjusts export prices for non-price factors

Literature review

- Feenstra (AER 1994) and Broda and Weinstein (QJE 2006) incorporate changes in variety into a CES aggregate of import prices.
- Benkovskis and Wörz (OeNB WP 2011) extend this to incorporate:
 - Changes in the number of traded products;
 - Changes in non-price factors (quality / taste).
- Relative quality becomes a function of observable unit values and volumes as well as unobservable elasticities of substitution between varieties and products.
- In this application we move further to apply this methodology to export prices.

elasticity of substitution between products

Theoretical framework — Consumer's utility function

First-level CES utility function (imports and domestic good)

$$U_{t} = \left(D_{t}^{\frac{\kappa-1}{\kappa}} + M_{t}^{\frac{\kappa-1}{\kappa}}\right)^{\frac{\kappa}{\kappa-1}}; \quad \kappa > 1$$

• Second-level CES utility function (different imported goods)

ds
$$M_{t} = \left(\sum_{g \in G} M_{gt}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}; \quad \gamma \ge 1$$

set of goods

• Third-level CES utility function (different varieties of a good)

$$M_{gt} = \left(\sum_{c \in C} \left(\frac{1}{\sigma_g} \right) n_{gct}^{\frac{\sigma_g - 1}{\sigma_g}} \right)^{\frac{\sigma_g}{\sigma_g - 1}}; \quad \sigma_g > 1$$

elasticity of substitution between varieties

Theoretical framework – Minimum unit-cost function

• After solving the utility maximization problem:

$$\phi_{gt} = \left(\sum_{c \in C} d_{gct} p_{gct}^{1-\sigma_g}\right)^{\frac{1}{1-\sigma_g}}$$

- > minimum unit-cost depend on price, quality or taste parameter and set of partner countries (variety)
- The exact import price index for good *g* is defined as:

$$P_g = \frac{\phi_{gt}}{\phi_{gt-1}}$$

-9-

Theoretical framework – Adjusted price index

• Conventional price index:

$$P_g^{conv} = \prod_{c \in C_g} \left(\frac{p_{gc,t}}{p_{gc,t-1}} \right)^{v}$$

• Variety adjusted price index (Broda&Weinstein, 2006):

$$P_{g}^{\text{var}} = \prod_{c \in C_{g}} \left(\frac{p_{gc,t}}{p_{gc,t-1}} \right)^{w_{gc,t}} \left(\frac{\lambda_{gt}}{\lambda_{gt-1}} \right)^{\overline{\sigma_{g}}-1} \qquad \lambda_{gt} = \frac{\sum_{c \in I_{g}} p_{gc,t} x_{gc,t}}{\sum_{c \in I_{gt}} p_{gc,t} x_{gc,t}} \qquad \lambda_{g,t-1} = \frac{\sum_{c \in I_{g}} p_{gc,t-1} x_{gc,t-1}}{\sum_{c \in I_{g,t-1}} p_{gc,t-1} x_{gc,t-1}}$$

• Non-price factors adjusted price index (Benkovskis&Wörz, 2011):

$$P_{g}^{adj} = \left(\frac{\sum_{c \in C_{g,t}} d_{gc,t} p_{gc,t}^{1-\sigma_{g}}}{\sum_{c \in C_{g,t-1}} d_{gc,t-1} p_{gc,t-1}^{1-\sigma_{g}}}\right)^{\frac{1}{1-\sigma_{g}}} = P_{g}^{conv} \left(\frac{\lambda_{gt}}{\lambda_{gt-1}}\right)^{\frac{1}{\sigma_{g}-1}} \prod_{c \in C_{g}} \left(\frac{d_{gc,t}}{d_{gc,t-1}}\right)^{\frac{w_{gct}}{1-\sigma_{g}}}$$

Theoretical framework – How to estimate non-price factors

- Non-price parameters (i.e. quality/taste) are unobservable
- But they can be decomposed into relative prices and relative quantity (=observable)
- It is possible to assess quality within the same theoretical framework – consumer utility maximisation:

$$\ln\left(\frac{d_{gct}}{d_{gkt}}\right) = \sigma_g \ln\left(\frac{p_{gct}}{p_{gkt}}\right) + \ln\left(\frac{x_{gct}}{x_{gkt}}\right) - \ln\left(\frac{z_{gct}}{z_{gkt}}\right)$$

 Relative quality of variety depends on relative prices, volumes and the elasticity of substitution between varieties

Theoretical framework – Estimation of elasticities

- Elasticity of substitution between products calibrated: $\gamma = 2$
- Elasticity of substitution between varieties estimated from system of equations (Broda&Weinstein, 2006):
 - $\circ~$ Relative demand equation:

$$\frac{\Delta \ln s_{gc,t}}{\Delta \ln s_{gk,t}} = -(\sigma_g - 1) \frac{\Delta \ln p_{gc,t}}{\Delta \ln p_{gk,t}} + \mathcal{E}_{gc,t}$$

• Relative supply equation:

$$\frac{\Delta \ln p_{gc,t}}{\Delta \ln p_{gk,t}} = \frac{\omega_g}{1 + \omega_g} \frac{\Delta \ln s_{gc,t}}{\Delta \ln s_{gk,t}} + \delta_{gc,t}$$

Data

- Full UN Comtrade database
- 6-digit HS96 classification level (5132 products)
- Highly disaggregated data to calculate UV's
- Volumes proxied by kg or other units
- Exclusion of outliers
- Import data for 188 importers (reporters) and 236 exporters (partners)
- Export share analysis based on import data
- 1996 to 2011, annual data

Elasticities of substitutions between varieties (σ 's) for top 20 importers

	No. of				25 th		75th
	estimated	Mean	Minimum	Maximum	2.J	Median	7.J
	elasticities				percentile		percentile
United States	3725	19.97	1.0010	6442	1.64	2.00	3.13
China	3951	26.33	1.0021	46325	1.74	2.23	3.53
Germany	4708	13.39	1.0037	41612	1.68	2.01	2.83
Japan	4126	6.41	1.0015	3038	1.65	2.08	3.04
France	4899	4.75	1.0022	3698	1.68	2.03	2.84
United Kingdom	4846	7.70	1.0014	12862	1.63	1.95	2.74
Italy	4861	7.32	1.0029	7908	1.65	2.02	2.86
Korea	4260	17.55	1.0012	36421	1.69	2.22	3.35
Hong Kong (China)	3243	48.16	1.0016	75165	1.80	2.49	5.00
Netherlands	4126	24.31	1.0016	64064	1.69	2.15	3.25
Belgium	4679	10.24	1.0021	22747	1.73	2.20	3.41
India	3610	28.20	1.0032	21899	1.85	2.66	5.54
Canada	3308	29.33	1.0073	17279	1.83	2.51	4.91
Singapore	2823	45.70	1.0010	49488	1.79	2.55	5.76
Spain	4776	8.18	1.0011	16343	1.68	2.07	2.98
Mexico	3664	12.08	1.0010	1113	1.69	2.17	3.38
Russia	4070	5.84	1.0052	1617	1.68	2.11	3.10
Turkey	4000	18.15	1.0035	38896	1.69	2.21	3.46
Australia	2698	6.31	1.0014	1935	1.75	2.27	3.56
Thailand	3497	47.67	1.0020	68239	1.77	2.48	4.76

From import to export prices

- Our goal, however, is to evaluate a quality-adjusted relative *export* price index
- We work with mirror image trade flows: expenditure for imports of good $g_{c,t}$ = exports of good $g_{c,t}$ by partner country
- Competitiveness is a relative concept: compare price index of a particular exporter k to all competitors:

$$RXP_{gkt} = \frac{\phi_{gt}^{k} / \phi_{gt-1}^{k}}{\phi_{gt}^{-k} / \phi_{gt-1}^{-k}} = \frac{(p_{gkt} / p_{gkt-1})(d_{gkt} / d_{gkt-1})^{\frac{1}{1-\sigma_{g}}}}{\phi_{gt}^{-k} / \phi_{gt-1}^{-k}}$$

\$\oightarrow_{gt}^{k}\$ - minimum unit-cost of \$g\$, exported only by country \$k\$
\$\oightarrow_{gt}^{-k}\$ - minimum unit-cost of \$g\$, exported by all countries except \$k\$

From import to export prices

 Plugging our non-price factors adjusted import price index into the relative export price index, we get:

$$RXP_{gct} = \prod_{c \in C_g^{-k}} \left(\frac{p_{gkt}}{p_{gct}} \frac{p_{gct-1}}{p_{gkt-1}} \right)^{w_{gct}^{-k}} \left(\frac{\lambda_{gt}^{-k}}{\lambda_{gt-1}^{-k}} \right)^{\frac{1}{1-\sigma_g}} \prod_{c \in C_g^{-k}} \left(\frac{d_{gkt}}{d_{gct}} \frac{d_{gct-1}}{d_{gkt-1}} \right)^{\frac{w_{gct}^{-k}}{1-\sigma_g}}$$

- 1. Traditional relative price index, *increase* = worsening price competitiveness
- 2. Changes in monopoly power of exporters ('variety'), increase = more partner countries
- 3. Changes in non-price factors (quality / taste), *increase* = *fall in relative quality / taste*

6 -

Relative export price index – 'Winners'

- 17 -

Relative export price index – 'Loosers'

China: Contribution of non-price factors to competitiveness gains in individual sectors

Japan: Contribution of non-price factors to competitiveness losses in individual sectors

Summary – Unresolved questions so far

- Competitiveness measures based on REER show improvements in price competitiveness for Japan, but losses for China.
- This may be explained by price convergence between these countries, but does it reflect their "ability to sell"? Changes in market shares tell a different story.
- If we focus on export prices only, relative price changes are more in line with market share gains and losses.
- However, non-price factors (changes in quality and tastes) are likely to exert a substantially greater impact on competitiveness than prices.

Summary – Proposing a new indicator

- We offer a new indicator that adjusts for changes in the number of competitors ('variety') and other non-price factors.
- Our export price index allows to assess the relative importance of price versus non-price factors.
- It can further be used to assess export performance within narrowly defined sectors.

Results

- Within Asia, export performance has been highly mixed over the past decade. This is reflected in price and non-price adjusted indicators.
- Non-price factors were highly influential in boosting trade competitiveness of China, Vietnam and Thailand.
- They also played an important role in competitive losses in Japan and Malaysia.
- Indonesia: Large negative contribution of non-price factors to competitiveness in mineral products contrasts and dominates positive non-price contribution in precision instruments and transport equipment.