

Quality and variety of exports from the new EU member states: evidence from very disaggregated data

Konstantīns Beņkovskis Ramunė Rimgailaitė

March 3, 2011

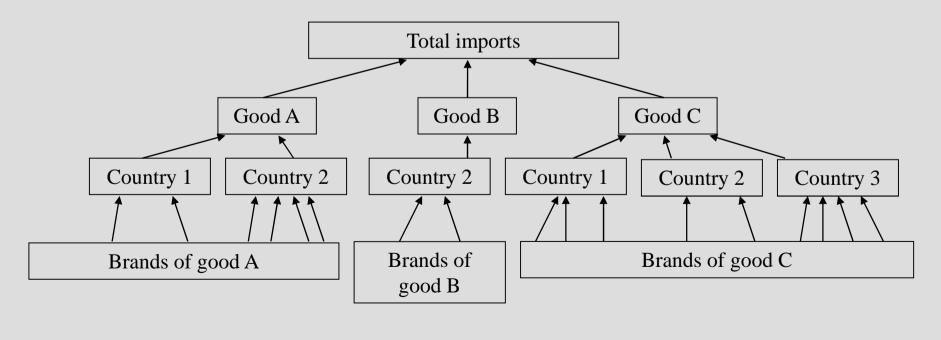
- The volume and price are not the only important characteristics of international trade:
 - Monopolistic competition models as in Krugman (1979) stress the extensive margin
 - Vertical differentiation models like in Flam and Helpman (1987) feature a quality margin

- The goal of this paper is to evaluate variety and quality of exports from NMSs in 1999-2009:
 - Highlight the effect of EU membership on extensive margin of NMS exports
 - Allows extracting quality part from the export price dynamics and leads to better understanding of price competitiveness

LATVIJAS BANKA Introduction Definition of quality

- The quality is defined to be any tangible or intangible attribute of a good that increases all consumers' valuation of it
- Therefore product quality encompasses both:
 - physical attributes (e.g., durability)
 - intangible attributes (e.g., product image due to advertising)
- Usually observed export prices (unit values) are used as proxies
- This measure is unsatisfactory, as export prices may vary for reasons other than quality:
 - different production costs
 - different composition of goods

- The definition of variety may be different in different theoretical and empirical papers.
- Variety is commonly defined as a brand produced by a firm, the total output of a firm, the output of a country, or the output within an industry within a country
- In our research we define variety as a brand produced by a firm
 - Closer to those in Krugman (1979)



- The methodology is mainly based on three papers:
 - Feenstra (1994) "New Product Varieties and the Measurement of International Prices", AER, vol.84, No.1, pp.157-177
 - Hummels and Klenow (2005) "The Variety and Quality of a Nation's Exports", AER, vol.95, No.3, pp.704-723
 - Broda and Weinstein (2006) "Globalization and the Gains from Variety", QJE, vol.121, No.2, pp.541-585

LATVIJAS BANKA Theoretical model Goods and brands

- Consumers buy *I* observable goods from up to *J* countries •
- Goods are further differentiated into brands •
 - For example, beer and red wine are different categories of goods, beer is further differentiated into brands (Leffe, Stella Artois, Guiness etc.), which could come from different countries.

Theoretical model Consumers' utility function

- The utility function of a representative agent can be denoted by a two-level utility function.
- Consumers utility given by CES function:

$$U = \left(\sum_{i=1}^{I} M_i^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}, \quad \gamma > 1$$

- M_i is the sub-utility derived from the consumption of good *i*
- $-\gamma$ denotes the elasticity of substitution among goods
- *I* number of differentiated goods

Theoretical model Consumers' sub-utility function

• Each sub-utility depends not only on total quantity and elasticity of substitution, but also on quality and variety:

$$M_{i} = \left(\sum_{j=1}^{J} Q_{ji} N_{ji} x_{ji}^{\frac{\sigma_{i}-1}{\sigma_{i}}}\right)^{\frac{\sigma_{i}}{\sigma_{i}-1}}, \quad \sigma_{i} > 1$$

- Q_{ji} is the average quality of a good *i* from country *j*
- x_{ji} is the average quantity of a single brand of a good *i* from country *j*
- N_{ji} is variety (the number of different brands) of good *i* from country *j*
- σ_i denotes the elasticity of substitution among varieties of good *i*
- J is the total number of countries

Theoretical model Utility maximization problem

• Consumers maximize utility:

$$U = \left(\sum_{i=1}^{I} M_{i}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}} \xrightarrow{x_{ji}} \max$$
$$M_{i} = \left(\sum_{j=1}^{J} Q_{ji} N_{ji} x_{ji}^{\frac{\sigma_{i}-1}{\sigma_{i}}}\right)^{\frac{\sigma_{i}}{\sigma_{i}-1}}$$

• Subject to budget constraint:

$$\sum_{i=1}^{I} \sum_{j=1}^{J} N_{ji} p_{ji} x_{ji} \leq Y$$

- p_{ji} is the price of each of the units
- Y is consumers' income

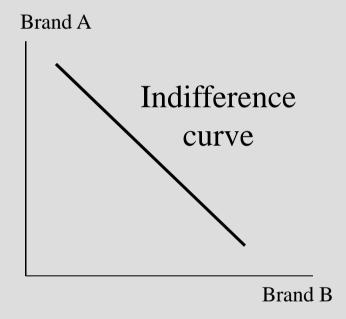
Theoretical model Equation for relative quality

• First order conditions:

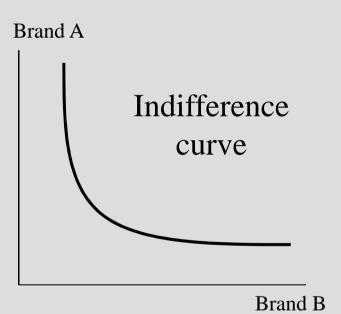
 $U^{\frac{1}{\gamma}}M_{i}^{\frac{1}{\sigma_{i}}\frac{1}{\gamma}}Q_{ji}x_{ji}^{\frac{1}{\sigma_{i}}} = \lambda N_{ji}p_{ji}$

• Taking logs and using ratios for the same good from different countries (*j* and *k*) we obtain:

$$\ln\left(\frac{Q_{ji}}{Q_{ki}}\right) = \ln\left(\frac{p_{ji}}{p_{ki}}\right) + \frac{1}{\sigma_i}\ln\left(\frac{x_{ji}}{x_{ki}}\right)$$


• Relative quality is indicated by relative price level and relative quantity of one brand. Elasticity of substitution is important

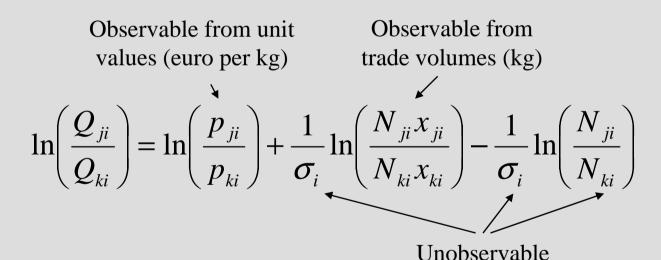
LATVIJAS BANKA Theoretical model Perfect competition case


- If σ_i is very high, different • brands are perfect substitutes
- This is situation of a perfect competition
- Relative quality is equal to ulletrelative price level

$$\ln\left(\frac{Q_{ji}}{Q_{jk}}\right) = \ln\left(\frac{p_{ji}}{p_{jk}}\right)$$

Theoretical model Monopolistic competition

- If σ_i is close to 1, different brands are not perfect substitutes, producers have market power
- This is situation of a monopolistic competition
- Relative quality is also positively linked to relative quantities



$$\ln\left(\frac{Q_{ji}}{Q_{ki}}\right) = \ln\left(\frac{p_{ji}}{p_{ki}}\right) + \frac{1}{\sigma_i}\ln\left(\frac{x_{ji}}{x_{ki}}\right)$$

LATVIJAS BANKA Theoretical model Modified equation for relative quality

Relative quality could be also described by the following • equation:

- Data on NMSs exports comes from EU27 import side good proxy, as EU is the main partner of NMSs
- Very disaggregated data on external trade HS 8-digit classification
 - We need high level of disaggregation to interpret unit value indices as prices
 - To account for structural changes, all observations with outlying unit value indices were excluded from the database
- EU27 import data
 - Annual data from 1999 until 2009
 - 14520 goods
 - From 50 countries:
 - European Union (all 27 countries)
 - CIS countries (Russia, Ukraine, Belarus, Kazakhstan)
 - Other important countries (US, Japan, Canada, China, India, Brazil, etc.)

Proxy for variety Poisson distribution

- No data available for variety (number of brands). However, the number of 8-digit products in a 2-digit sector for which country has strictly positive export, is observed
- It can serve as an indicator of export variety in this sector *per se*
- This usual measure underestimates variety, as it implicitly assumes that umber of trademarks exported is either one or zero

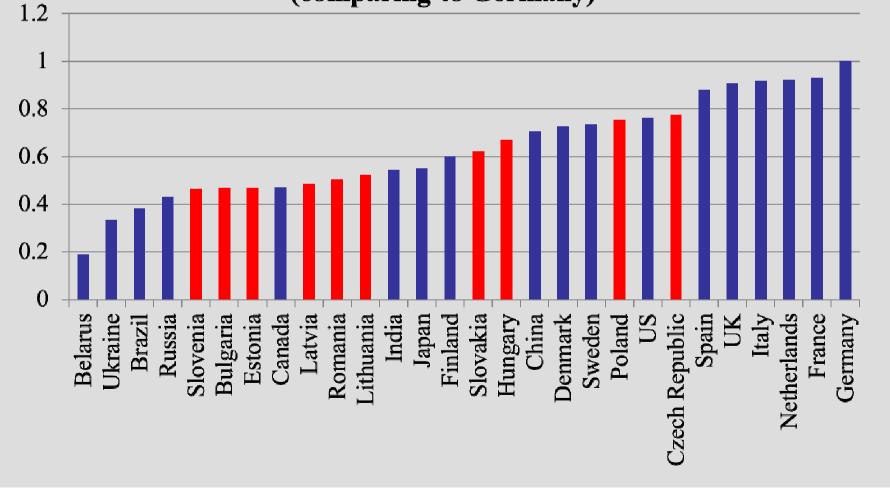
Proxy for variety Poisson distribution

- The number of exporting firms is large, while the probability that a firm is exporting a particular product is small
- We assume that number of brands of 8-digit products in each 2-digit sector follows the Poisson distribution:

$$f(n_s) = \frac{\mu_s^{n_s} e^{-\mu_s}}{n_s!}$$

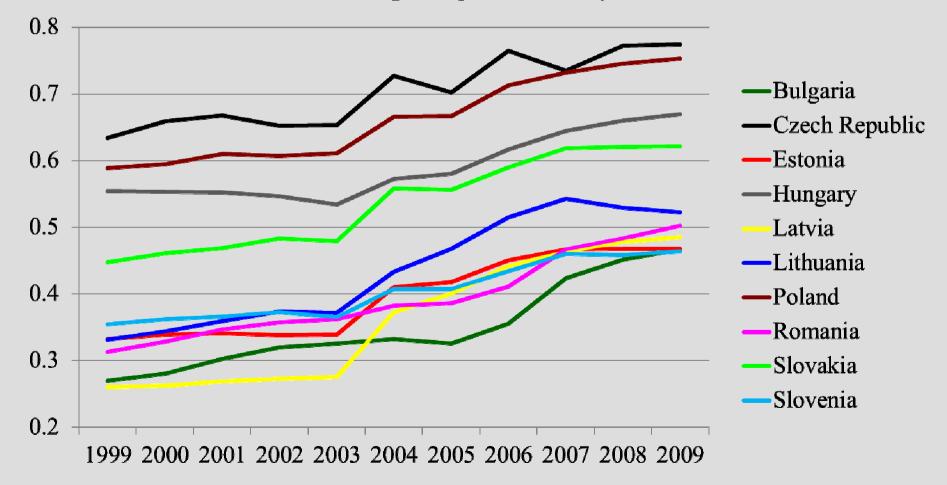
- n_s is the number of brands of 8-digit products in 2-digit sector s
- μ_s is a positive real number, equal to the expected number of brands of 8-digit product in 2-digit sector *s*

Proxy for variety Poisson distribution


- We observe *f*(0), which is the share of 8-digit products in which country has no exports in a 2-digit sector
- From this, it could be derived that:

 $\mu_s = -\ln(f(0))$

- μ_s is a proxy for the average number of brands of 8-digit products in 2-digit sector *s*
- To use Poisson distribution we need to assume that events (exporting of a particular product) occur independently:
 - of course, the latter assumption is not plausible, as technology and information spillovers should ensure a positive correlation between events
 - However, for the moment we don't have better alternative



Mean relative variety of total exports to EU in 2009 (comparing to Germany)

LATVILAS BANKA Proxy for variety Dynamics of estimated relative varieties

Mean relative variety of total exports to EU in 1999-2009 (comparing to Germany)

Elasticity of substitution Demand function

• Following Feenstra (1994), we can define demand function for good *i* from utility maximization problem:

$$\ln s_{ji,t} = (\sigma_i - 1) \ln P_t - (\sigma_i - 1) \ln p_{ji,t} + \ln N_{ji,t} + \sigma_i \ln Q_{ji,t}$$

$$s_{ji,t} = \frac{x_{ji,t} p_{ji,t} N_{ji,t}}{\sum_{j=1}^{J} x_{ji,t} p_{ji,t} N_{ji,t}}$$

- s_{ji} is share of country *j* in total imports of good *i*.
- *P* is minimum cost of obtaining one unit of good *i*.
- Assume, that $\ln Q_{ii,t}$ is random walk process

 $\ln Q_{ji,t} = \ln Q_{ji,t-1} + e_{ji,t}$

Elasticity of substitution Demand function

• By taking first differences:

$$\Delta \ln s_{ji,t} - \Delta \ln N_{ji,t} = \phi_{i,t} - (\sigma_i - 1)\Delta \ln p_{ji,t} + \mathcal{E}_{ji,t}$$
$$\phi_{i,t} = (\sigma_i - 1)\Delta \ln P_t$$

 $\mathcal{E}_{ji,t} = \sigma_i e_{ji,t}$

- Market share of one brand negatively linked to price level
- $\varepsilon_{ji,t}$ appears as an error term

Elasticity of substitution Supply function

• Supply curve is specified in following way:

$$\Delta \ln p_{ji,t} = \omega_i \Delta \ln x_{ji,t} + \xi_{ji,t}$$
$$\omega_i \ge 0$$

- ω_i is the inverse supply elasticity
- Quantity is positively linked to price level
- $\xi_{ji,t}$ is a random error that is assumed to be independent on $\varepsilon_{ji,t}$

Elasticity of substitution System of two equations

• Rearranging demand and supply curves and using ratios, we obtain system of two equations:

$$\left(\Delta \ln \left(\frac{s_{ji,t}}{s_{ki,t}} \right) - \Delta \ln \left(\frac{N_{ji,t}}{N_{ki,t}} \right) \right) + (\sigma_i - 1) \Delta \ln \left(\frac{p_{ji,t}}{p_{ki,t}} \right) = \widetilde{\varepsilon}_{ji,t}$$

$$(1 - \rho_i) \Delta \ln \left(\frac{p_{ji,t}}{p_{ki,t}} \right) - \frac{\rho_i}{\sigma_i - 1} \left(\Delta \ln \left(\frac{s_{ji,t}}{s_{ki,t}} \right) - \Delta \ln \left(\frac{N_{ji,t}}{N_{ki,t}} \right) \right) = \widetilde{\delta}_{ji,t}$$

$$\widetilde{\varepsilon}_{ji,t} = \varepsilon_{ji,t} - \varepsilon_{ki,t}$$

$$\widetilde{\delta}_{ji,t} = \delta_{ji,t} - \delta_{ki,t}$$

$$\delta_{ji,t} = \frac{\xi_{ji,t}}{1 + \omega_i \sigma_i}$$

$$0 \le \rho_i = \frac{\omega_i (\sigma_i - 1)}{1 + \omega_i \sigma_i} < \varepsilon_i$$

Elasticity of substitution Transformation of the system

• In order to take advantage of the independence of $\tilde{\mathcal{E}}_{ji,t}$ an $\tilde{\delta}_{ji,t}$, these two equations are multiplied together to obtain:

 $Y_{ji,t} = \theta_{1,i} X_{ji,t} + \theta_{2,i} Z_{ji,t} + u_{ji,t}$

$$Y_{ji,t} = \left(\Delta \ln\left(\frac{p_{ji,t}}{p_{ki,t}}\right)\right)^{2}, \qquad X_{ji,t} = \left(\Delta \ln\left(\frac{s_{ji,t}}{s_{ki,t}}\right) - \Delta \ln\left(\frac{N_{ji,t}}{N_{ki,t}}\right)\right)^{2},$$
$$u_{ji,t} = \frac{\tilde{\varepsilon}_{ji,t}\tilde{\delta}_{ji,t}}{(1 - \rho_{i})(\sigma_{i} - 1)}, \quad Z_{ji,t} = \left(\Delta \ln\left(\frac{s_{ji,t}}{s_{ki,t}}\right) - \Delta \ln\left(\frac{N_{ji,t}}{N_{ki,t}}\right)\right) \left(\Delta \ln\left(\frac{p_{ji,t}}{p_{ki,t}}\right)\right),$$
$$\theta = \frac{\rho_{i}}{(1 - \rho_{i})(\sigma_{i} - 1)}, \quad \theta = \frac{2\rho_{i} - 1}{(1 - \rho_{i})(\sigma_{i} - 1)},$$

$$\theta_{1,i} = \frac{\rho_i}{(\sigma_i - 1)^2 (1 - \rho_i)}, \quad \theta_{2,i} = \frac{2\rho_i - 1}{(\sigma_i - 1)(1 - \rho_i)}$$

Elasticity of substitution Ignoring variation over time

• Since the prices and shares are correlated with $\delta_{ji,t}$ and $\varepsilon_{ji,t}$, then $u_{ji,t}$ is correlated with $X_{ji,t}$ and $Z_{ji,t}$. A consistent estimator can be obtained by averaging over all *t*:

$$\overline{Y}_{ji} = \theta_{1,i} \overline{X}_{ji} + \theta_{2,i} \overline{Z}_{ji} + \overline{u}_{ji}$$
$$E(\overline{X}_{ji} \overline{u}_{ji}) = 0, \quad E(\overline{Z}_{ji} \overline{u}_{ji}) = 0$$

• This equation is estimated for every good *i*

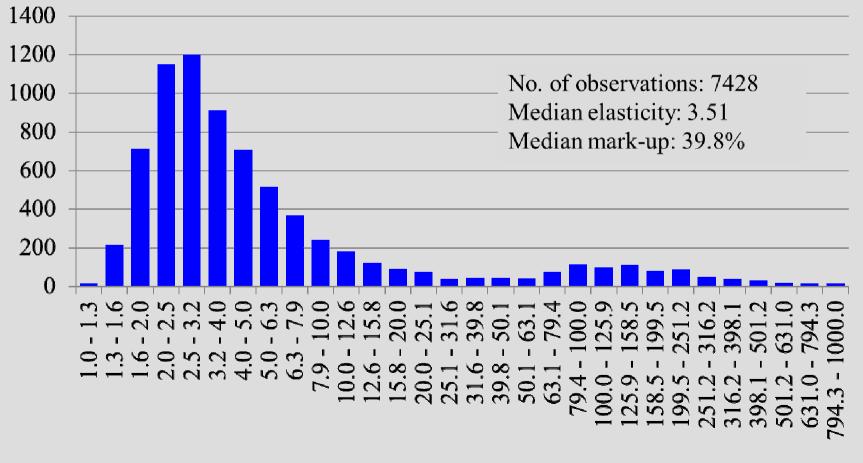
Equations for elasticities

• As long as $\hat{\theta}_{1,i} > 0$, the estimates of ρ_i and σ_i are as follows: - If $\hat{\theta}_{2,i} \ge 0$

$$\hat{\rho}_{i} = \frac{1}{2} + \left(\frac{1}{4} - \frac{1}{4 + \left(\hat{\theta}_{2,i}^{2} / \hat{\theta}_{1,i}\right)}\right)^{\frac{1}{2}}$$

- If $\hat{\theta}_{2,i} < 0$

$$\hat{\rho}_{i} = \frac{1}{2} - \left(\frac{1}{4} - \frac{1}{4 + \left(\hat{\theta}_{2,i}^{2} / \hat{\theta}_{1,i}\right)}\right)^{\frac{1}{2}}$$


$$\hat{\sigma}_i = 1 + \left(\frac{2\hat{\rho}_i - 1}{1 - \hat{\rho}_i}\right) \frac{1}{\hat{\theta}_{2,i}}$$

Elasticity of substitution Estimation

- Estimation was made for each of 7428 goods *i*, using 2-step GMM
- It is required that $\hat{\theta}_{1,i} > 0$, otherwise σ_i is imaginary number
- If $\hat{\theta}_{i,i} \leq 0$, then we make a grid search that finds the minimum sum of weighted least squares of residuals over the different values of σ_i and ρ_i
- Elasticities are calculated only for those goods, where there are at least 15 countries exporting to EU27

Elasticity of substitution Results

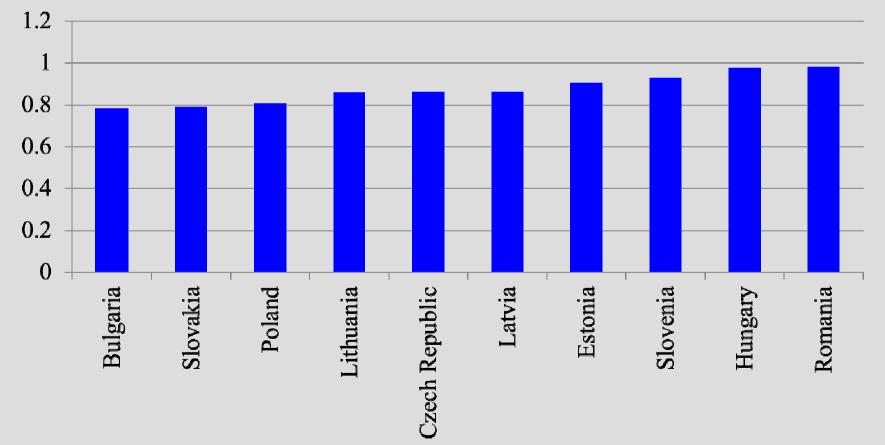
Distribution of estimated elasticities of substitution between varieties

• For aggregation of relative quality in a particular time period we use the Sato-Vartia index:

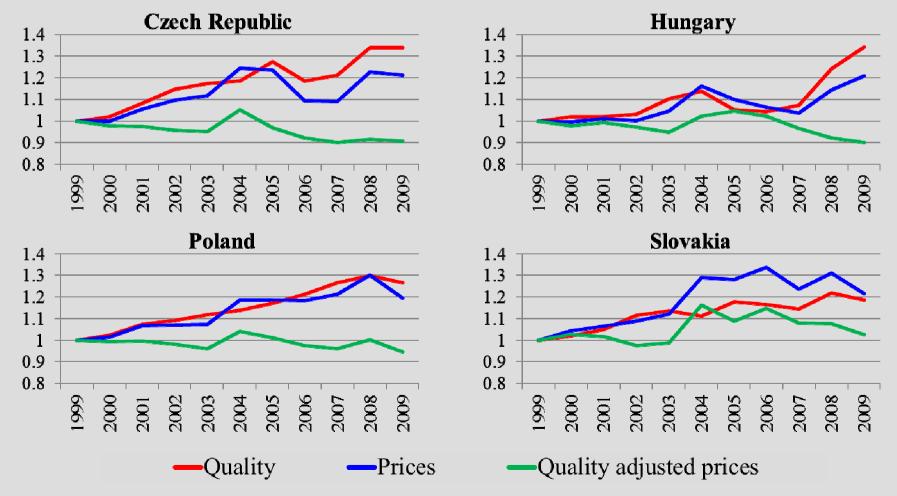
$$\ln Q_{jk,t} = \sum_{i \in I_{jk}} W_{i,t} \ln \frac{Q_{ij,t}}{Q_{ik,t}}$$
$$S_{ij,t} = \frac{N_{ij,t} P_{ij,t} x_{ij,t}}{\sum_{i \in I_{jk}} N_{ij,t} P_{ij,t} x_{ij,t}}$$
$$W_{i,t} = \frac{\left(\frac{S_{ij,t} - S_{ik,t}}{\ln S_{ij,t} - \ln S_{ik,t}}\right)}{\sum_{i \in I_{jk}} \left(\frac{S_{ij,t} - S_{ik,t}}{\ln S_{ij,t} - \ln S_{ik,t}}\right)}$$

• For aggregation of changes in relative quality we use different Sato-Vartia index:

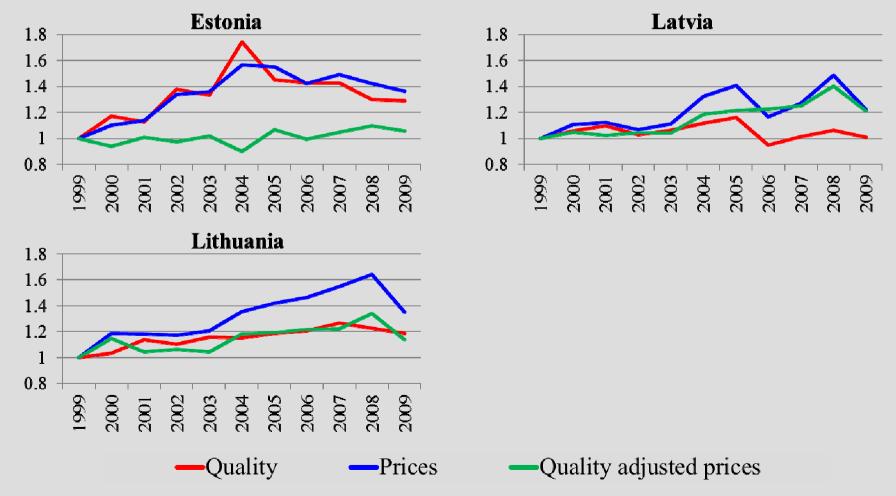
$$\ln q_{jk,t} = \sum_{i \in I_{jk}} w_{ij,t} \Delta \ln \frac{Q_{ij,t}}{Q_{ik,t}}$$
$$w_{ij,t} = \frac{\left(\frac{S_{ij,t} - S_{ij,t-1}}{\ln S_{ij,t} - \ln S_{ij,t-1}}\right)}{\sum_{i \in I} \left(\frac{S_{ij,t} - S_{ij,t-1}}{\ln S_{ij,t} - \ln S_{ij,t-1}}\right)}$$



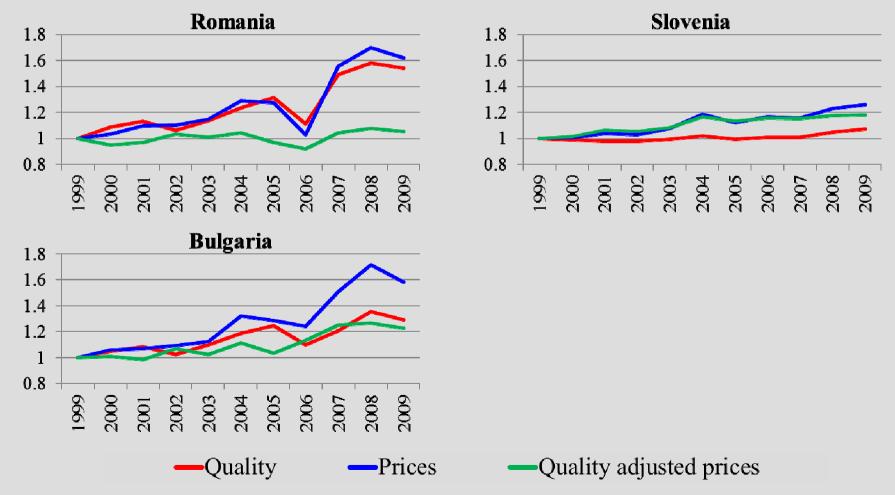
Relative quality of total exports to EU in 2009 (comparing to Germany)



Relative price of total exports to EU in 2009 (comparing to Germany)


Main results Price and quality changes in V4 countries

Dynamics of relative quality, price and quality adjusted price, 1999-2009 (comparing to Germany, 1999=1)


Main results Price and quality changes in the Baltics

Dynamics of relative quality, price and quality adjusted price, 1999-2009 (comparing to Germany, 1999=1)

Main results Price and quality changes in other NMSs

Dynamics of relative quality, price and quality adjusted price, 1999-2009 (comparing to Germany, 1999=1)

- Integration into the EU market went not only in the intensive but also in the extensive dimension:
 - all NMSs increased significantly the average number of brands exported to the EU and the most rapid increase was observed in 2004 and further years

LATVIJAS BANKA Conclusions Relatively low level of quality

- NMS exports compared with German exports were of lower quality in 2009:
 - the Baltic States and Bulgaria appear at the lower end with relative quality of around 30 percent of German quality
 - the highest quality was observed in Hungary, Poland and the Czech Republic (around 55 percent of German quality)

LATVIJAS BANKA Conclusions Quality was increasing

- All NMSs increased average quality of exports during the 10-year period:
 - the highest cumulative increase in quality in Romania, Hungary and the Czech Republic
 - the lowest increase in Latvia and Slovenia
- Increase in prices adjusted by quality was significantly smaller than increase in prices:
 - large part of export price increase in NMSs was the result of improving quality and did not lead to loss of competitiveness